
FFmpeg Formats Documentation

Table of Contents
1 Description
2 Format Options

2.1 Format stream specifiers
3 Demuxers

3.1 aa
3.2 applehttp
3.3 apng
3.4 asf
3.5 concat

3.5.1 Syntax
3.5.2 Options
3.5.3 Examples

3.6 flv, live_flv
3.7 gif
3.8 image2

3.8.1 Examples
3.9 libgme
3.10 libopenmpt
3.11 mov/mp4/3gp/QuickTime
3.12 mpegts
3.13 mpjpeg
3.14 rawvideo
3.15 sbg
3.16 tedcaptions

4 Muxers
4.1 aiff

4.1.1 Options
4.2 asf

4.2.1 Options
4.3 avi

4.3.1 Options
4.4 chromaprint

4.4.1 Options
4.5 crc

4.5.1 Examples
4.6 flv
4.7 framecrc

4.7.1 Examples
4.8 framehash

4.8.1 Examples
4.9 framemd5

4.9.1 Examples
4.10 gif
4.11 hash

4.11.1 Examples
4.12 hls

4.12.1 Options
4.13 ico
4.14 image2

4.14.1 Examples
4.14.2 Options

4.15 matroska
4.15.1 Metadata
4.15.2 Options

4.16 md5
4.16.1 Examples

4.17 mov, mp4, ismv
4.17.1 Options
4.17.2 Example
4.17.3 Audible AAX

4.18 mp3
4.19 mpegts

4.19.1 Options
4.19.2 Example

4.20 mxf, mxf_d10
4.20.1 Options

4.21 null
4.22 nut
4.23 ogg
4.24 segment, stream_segment, ssegment

4.24.1 Options
4.24.2 Examples

4.25 smoothstreaming
4.26 fifo

4.26.1 Examples
4.27 tee

4.27.1 Examples
4.28 webm_dash_manifest

4.28.1 Options
4.28.2 Example

4.29 webm_chunk
4.29.1 Options

4.29.2 Example
5 Metadata
6 See Also
7 Authors

1 Description# TOC
This document describes the supported formats (muxers and demuxers) provided by the libavformat
library.

2 Format Options# TOC
The libavformat library provides some generic global options, which can be set on all the muxers and
demuxers. In addition each muxer or demuxer may support so-called private options, which are specific
for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVFormatContext options or using the libavutil/opt.h API for programmatic use.

The list of supported options follows:

avioflags flags (input/output)

Possible values:

‘direct’

Reduce buffering.

probesize integer (input)

Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher value
will enable detecting more information in case it is dispersed into the stream, but will increase
latency. Must be an integer not lesser than 32. It is 5000000 by default.

packetsize integer (output)

Set packet size.

fflags flags (input/output)

Set format flags.

Possible values:

‘ignidx’

Ignore index.

‘fastseek’

Enable fast, but inaccurate seeks for some formats.

‘genpts’

Generate PTS.

‘nofillin’

Do not fill in missing values that can be exactly calculated.

‘noparse’

Disable AVParsers, this needs +nofillin too.

‘igndts’

Ignore DTS.

‘discardcorrupt’

Discard corrupted frames.

‘sortdts’

Try to interleave output packets by DTS.

‘keepside’

Do not merge side data.

‘latm’

Enable RTP MP4A-LATM payload.

‘nobuffer’

Reduce the latency introduced by optional buffering

‘bitexact’

Only write platform-, build- and time-independent data. This ensures that file and data
checksums are reproducible and match between platforms. Its primary use is for regression
testing.

‘shortest’

Stop muxing at the end of the shortest stream. It may be needed to increase
max_interleave_delta to avoid flushing the longer streams before EOF.

seek2any integer (input)

Allow seeking to non-keyframes on demuxer level when supported if set to 1. Default is 0.

analyzeduration integer (input)

Specify how many microseconds are analyzed to probe the input. A higher value will enable
detecting more accurate information, but will increase latency. It defaults to 5,000,000 microseconds
= 5 seconds.

cryptokey hexadecimal string (input)

Set decryption key.

indexmem integer (input)

Set max memory used for timestamp index (per stream).

rtbufsize integer (input)

Set max memory used for buffering real-time frames.

fdebug flags (input/output)

Print specific debug info.

Possible values:

‘ts’
max_delay integer (input/output)

Set maximum muxing or demuxing delay in microseconds.

fpsprobesize integer (input)

Set number of frames used to probe fps.

audio_preload integer (output)

Set microseconds by which audio packets should be interleaved earlier.

chunk_duration integer (output)

Set microseconds for each chunk.

chunk_size integer (output)

Set size in bytes for each chunk.

err_detect, f_err_detect flags (input)

Set error detection flags. f_err_detect is deprecated and should be used only via the ffmpeg
tool.

Possible values:

‘crccheck’

Verify embedded CRCs.

‘bitstream’

Detect bitstream specification deviations.

‘buffer’

Detect improper bitstream length.

‘explode’

Abort decoding on minor error detection.

‘careful’

Consider things that violate the spec and have not been seen in the wild as errors.

‘compliant’

Consider all spec non compliancies as errors.

‘aggressive’

Consider things that a sane encoder should not do as an error.

max_interleave_delta integer (output)

Set maximum buffering duration for interleaving. The duration is expressed in microseconds, and
defaults to 1000000 (1 second).

To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one
packet for each stream before actually writing any packets to the output file. When some streams are
"sparse" (i.e. there are large gaps between successive packets), this can result in excessive buffering.

This field specifies the maximum difference between the timestamps of the first and the last packet in
the muxing queue, above which libavformat will output a packet regardless of whether it has queued a
packet for all the streams.

If set to 0, libavformat will continue buffering packets until it has a packet for each stream, regardless
of the maximum timestamp difference between the buffered packets.

use_wallclock_as_timestamps integer (input)

Use wallclock as timestamps if set to 1. Default is 0.

avoid_negative_ts integer (output)

Possible values:

‘make_non_negative’

Shift timestamps to make them non-negative. Also note that this affects only leading negative
timestamps, and not non-monotonic negative timestamps.

‘make_zero’

Shift timestamps so that the first timestamp is 0.

‘auto (default)’

Enables shifting when required by the target format.

‘disabled’

Disables shifting of timestamp.

When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and
subtitles desynching and relative timestamp differences are preserved compared to how they would
have been without shifting.

skip_initial_bytes integer (input)

Set number of bytes to skip before reading header and frames if set to 1. Default is 0.

correct_ts_overflow integer (input)

Correct single timestamp overflows if set to 1. Default is 1.

flush_packets integer (output)

Flush the underlying I/O stream after each packet. Default 1 enables it, and has the effect of reducing
the latency; 0 disables it and may slightly increase performance in some cases.

output_ts_offset offset (output)

Set the output time offset.

offset must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added by the muxer to the output timestamps.

Specifying a positive offset means that the corresponding streams are delayed bt the time duration
specified in offset. Default value is 0 (meaning that no offset is applied).

format_whitelist list (input)

"," separated list of allowed demuxers. By default all are allowed.

dump_separator string (input)

Separator used to separate the fields printed on the command line about the Stream parameters. For
example to separate the fields with newlines and indention:

ffprobe -dump_separator "
 " -i ~/videos/matrixbench_mpeg2.mpg

max_streams integer (input)

Specifies the maximum number of streams. This can be used to reject files that would require too
many resources due to a large number of streams.

2.1 Format stream specifiers# TOC

Format stream specifiers allow selection of one or more streams that match specific properties.

Possible forms of stream specifiers are:

stream_index

Matches the stream with this index.

stream_type[:stream_index]

stream_type is one of following: ’v’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data, and ’t’ for
attachments. If stream_index is given, then it matches the stream number stream_index of this type.
Otherwise, it matches all streams of this type.

p:program_id[:stream_index]

If stream_index is given, then it matches the stream with number stream_index in the program with
the id program_id. Otherwise, it matches all streams in the program.

#stream_id

Matches the stream by a format-specific ID.

The exact semantics of stream specifiers is defined by the
avformat_match_stream_specifier() function declared in the
libavformat/avformat.h header.

3 Demuxers# TOC
Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type
of file.

When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list
all available ones using the configure option --list-demuxers.

You can disable all the demuxers using the configure option --disable-demuxers, and selectively
enable a single demuxer with the option --enable-demuxer=DEMUXER, or disable it with the option
--disable-demuxer=DEMUXER.

The option -demuxers of the ff* tools will display the list of enabled demuxers. Use -formats to
view a combined list of enabled demuxers and muxers.

The description of some of the currently available demuxers follows.

3.1 aa# TOC

Audible Format 2, 3, and 4 demuxer.

This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.

3.2 applehttp# TOC

Apple HTTP Live Streaming demuxer.

This demuxer presents all AVStreams from all variant streams. The id field is set to the bitrate variant
index number. By setting the discard flags on AVStreams (by pressing ’a’ or ’v’ in ffplay), the caller can
decide which variant streams to actually receive. The total bitrate of the variant that the stream belongs to
is available in a metadata key named "variant_bitrate".

3.3 apng# TOC

Animated Portable Network Graphics demuxer.

This demuxer is used to demux APNG files. All headers, but the PNG signature, up to (but not including)
the first fcTL chunk are transmitted as extradata. Frames are then split as being all the chunks between two
fcTL ones, or between the last fcTL and IEND chunks.

-ignore_loop bool

Ignore the loop variable in the file if set.

-max_fps int

Maximum framerate in frames per second (0 for no limit).

-default_fps int

Default framerate in frames per second when none is specified in the file (0 meaning as fast as
possible).

3.4 asf# TOC

Advanced Systems Format demuxer.

This demuxer is used to demux ASF files and MMS network streams.

-no_resync_search bool

Do not try to resynchronize by looking for a certain optional start code.

3.5 concat# TOC

Virtual concatenation script demuxer.

This demuxer reads a list of files and other directives from a text file and demuxes them one after the
other, as if all their packets had been muxed together.

The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts where the
previous one finishes. Note that it is done globally and may cause gaps if all streams do not have exactly
the same length.

All files must have the same streams (same codecs, same time base, etc.).

The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect
(because it was computed using the bit-rate or because the file is truncated, for example), it can cause
artifacts. The duration directive can be used to override the duration stored in each file.

3.5.1 Syntax# TOC

The script is a text file in extended-ASCII, with one directive per line. Empty lines, leading spaces and
lines starting with ’#’ are ignored. The following directive is recognized:

file path

Path to a file to read; special characters and spaces must be escaped with backslash or single quotes.

All subsequent file-related directives apply to that file.

ffconcat version 1.0

Identify the script type and version. It also sets the safe option to 1 if it was -1.

To make FFmpeg recognize the format automatically, this directive must appear exactly as is (no
extra space or byte-order-mark) on the very first line of the script.

duration dur

Duration of the file. This information can be specified from the file; specifying it here may be more
efficient or help if the information from the file is not available or accurate.

If the duration is set for all files, then it is possible to seek in the whole concatenated video.

inpoint timestamp

In point of the file. When the demuxer opens the file it instantly seeks to the specified timestamp.
Seeking is done so that all streams can be presented successfully at In point.

This directive works best with intra frame codecs, because for non-intra frame ones you will usually
get extra packets before the actual In point and the decoded content will most likely contain frames
before In point too.

For each file, packets before the file In point will have timestamps less than the calculated start
timestamp of the file (negative in case of the first file), and the duration of the files (if not specified
by the duration directive) will be reduced based on their specified In point.

Because of potential packets before the specified In point, packet timestamps may overlap between
two concatenated files.

outpoint timestamp

Out point of the file. When the demuxer reaches the specified decoding timestamp in any of the
streams, it handles it as an end of file condition and skips the current and all the remaining packets
from all streams.

Out point is exclusive, which means that the demuxer will not output packets with a decoding
timestamp greater or equal to Out point.

This directive works best with intra frame codecs and formats where all streams are tightly
interleaved. For non-intra frame codecs you will usually get additional packets with presentation
timestamp after Out point therefore the decoded content will most likely contain frames after Out
point too. If your streams are not tightly interleaved you may not get all the packets from all streams
before Out point and you may only will be able to decode the earliest stream until Out point.

The duration of the files (if not specified by the duration directive) will be reduced based on their
specified Out point.

file_packet_metadata key=value

Metadata of the packets of the file. The specified metadata will be set for each file packet. You can
specify this directive multiple times to add multiple metadata entries.

stream

Introduce a stream in the virtual file. All subsequent stream-related directives apply to the last
introduced stream. Some streams properties must be set in order to allow identifying the matching
streams in the subfiles. If no streams are defined in the script, the streams from the first file are
copied.

exact_stream_id id

Set the id of the stream. If this directive is given, the string with the corresponding id in the subfiles
will be used. This is especially useful for MPEG-PS (VOB) files, where the order of the streams is
not reliable.

3.5.2 Options# TOC

This demuxer accepts the following option:

safe

If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a protocol
specification and is relative and all components only contain characters from the portable character
set (letters, digits, period, underscore and hyphen) and have no period at the beginning of a
component.

If set to 0, any file name is accepted.

The default is 1.

-1 is equivalent to 1 if the format was automatically probed and 0 otherwise.

auto_convert

If set to 1, try to perform automatic conversions on packet data to make the streams concatenable.
The default is 1.

Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in
MP4 format. This is necessary in particular if there are resolution changes.

segment_time_metadata

If set to 1, every packet will contain the lavf.concat.start_time and the lavf.concat.duration packet
metadata values which are the start_time and the duration of the respective file segments in the
concatenated output expressed in microseconds. The duration metadata is only set if it is known based on
the concat file. The default is 0.

3.5.3 Examples# TOC

Use absolute filenames and include some comments:

my first filename
file /mnt/share/file-1.wav
my second filename including whitespace
file ’/mnt/share/file 2.wav’
my third filename including whitespace plus single quote
file ’/mnt/share/file 3’\’’.wav’

Allow for input format auto-probing, use safe filenames and set the duration of the first file:

ffconcat version 1.0

file file-1.wav
duration 20.0

file subdir/file-2.wav

3.6 flv, live_flv# TOC

Adobe Flash Video Format demuxer.

This demuxer is used to demux FLV files and RTMP network streams. In case of live network streams, if
you force format, you may use live_flv option instead of flv to survive timestamp discontinuities.

ffmpeg -f flv -i myfile.flv ...
ffmpeg -f live_flv -i rtmp://<any.server>/anything/key

-flv_metadata bool

Allocate the streams according to the onMetaData array content.

3.7 gif# TOC

Animated GIF demuxer.

It accepts the following options:

min_delay

Set the minimum valid delay between frames in hundredths of seconds. Range is 0 to 6000. Default
value is 2.

max_gif_delay

Set the maximum valid delay between frames in hundredth of seconds. Range is 0 to 65535. Default
value is 65535 (nearly eleven minutes), the maximum value allowed by the specification.

default_delay

Set the default delay between frames in hundredths of seconds. Range is 0 to 6000. Default value is
10.

ignore_loop

GIF files can contain information to loop a certain number of times (or infinitely). If ignore_loop
is set to 1, then the loop setting from the input will be ignored and looping will not occur. If set to 0,
then looping will occur and will cycle the number of times according to the GIF. Default value is 1.

For example, with the overlay filter, place an infinitely looping GIF over another video:

ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv

Note that in the above example the shortest option for overlay filter is used to end the output video at the
length of the shortest input file, which in this case is input.mp4 as the GIF in this example loops
infinitely.

3.8 image2# TOC

Image file demuxer.

This demuxer reads from a list of image files specified by a pattern. The syntax and meaning of the pattern
is specified by the option pattern_type.

The pattern may contain a suffix which is used to automatically determine the format of the images
contained in the files.

The size, the pixel format, and the format of each image must be the same for all the files in the sequence.

This demuxer accepts the following options:

framerate

Set the frame rate for the video stream. It defaults to 25.

loop

If set to 1, loop over the input. Default value is 0.

pattern_type

Select the pattern type used to interpret the provided filename.

pattern_type accepts one of the following values.

none

Disable pattern matching, therefore the video will only contain the specified image. You should
use this option if you do not want to create sequences from multiple images and your filenames
may contain special pattern characters.

sequence

Select a sequence pattern type, used to specify a sequence of files indexed by sequential
numbers.

A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the
characters representing a sequential number in each filename matched by the pattern. If the form
"%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the
total number of 0-padded digits representing the number. The literal character ’%’ can be
specified in the pattern with the string "%%".

If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by
the pattern must contain a number inclusively contained between start_number and
start_number+start_number_range-1, and all the following numbers must be sequential.

For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg"
will match a sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ...,
i%m%g-10.jpg, etc.

Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a
single image file img.jpeg you can employ the command:

ffmpeg -i img.jpeg img.png

glob

Select a glob wildcard pattern type.

The pattern is interpreted like a glob() pattern. This is only selectable if libavformat was
compiled with globbing support.

glob_sequence (deprecated, will be removed)

Select a mixed glob wildcard/sequence pattern.

If your version of libavformat was compiled with globbing support, and the provided pattern
contains at least one glob meta character among %*?[]{} that is preceded by an unescaped
"%", the pattern is interpreted like a glob() pattern, otherwise it is interpreted like a sequence
pattern.

All glob special characters %*?[]{} must be prefixed with "%". To escape a literal "%" you
shall use "%%".

For example the pattern foo-%*.jpeg will match all the filenames prefixed by "foo-" and
terminating with ".jpeg", and foo-%?%?%?.jpeg will match all the filenames prefixed with
"foo-", followed by a sequence of three characters, and terminating with ".jpeg".

This pattern type is deprecated in favor of glob and sequence.

Default value is glob_sequence.

pixel_format

Set the pixel format of the images to read. If not specified the pixel format is guessed from the first
image file in the sequence.

start_number

Set the index of the file matched by the image file pattern to start to read from. Default value is 0.

start_number_range

Set the index interval range to check when looking for the first image file in the sequence, starting
from start_number. Default value is 5.

ts_from_file

If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of
timestamps is not provided: images go in the same order as without this option. Default value is 0. If
set to 2, will set frame timestamp to the modification time of the image file in nanosecond precision.

video_size

Set the video size of the images to read. If not specified the video size is guessed from the first image
file in the sequence.

3.8.1 Examples# TOC

Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg,
img-002.jpeg, ..., assuming an input frame rate of 10 frames per second:

ffmpeg -framerate 10 -i ’img-%03d.jpeg’ out.mkv

As above, but start by reading from a file with index 100 in the sequence:

ffmpeg -framerate 10 -start_number 100 -i ’img-%03d.jpeg’ out.mkv

Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png"
suffix:

ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv

3.9 libgme# TOC

The Game Music Emu library is a collection of video game music file emulators.

See http://code.google.com/p/game-music-emu/ for more information.

Some files have multiple tracks. The demuxer will pick the first track by default. The track_index
option can be used to select a different track. Track indexes start at 0. The demuxer exports the number of
tracks as tracks meta data entry.

For very large files, the max_size option may have to be adjusted.

3.10 libopenmpt# TOC

libopenmpt based module demuxer

See https://lib.openmpt.org/libopenmpt/ for more information.

Some files have multiple subsongs (tracks) this can be set with the subsong option.

It accepts the following options:

subsong

Set the subsong index. This can be either ’all’, ’auto’, or the index of the subsong. Subsong indexes
start at 0. The default is ’auto’.

The default value is to let libopenmpt choose.

layout

Set the channel layout. Valid values are 1, 2, and 4 channel layouts. The default value is STEREO.

sample_rate

Set the sample rate for libopenmpt to output. Range is from 1000 to INT_MAX. The value default is
48000.

3.11 mov/mp4/3gp/QuickTime# TOC

QuickTime / MP4 demuxer.

This demuxer accepts the following options:

enable_drefs

http://code.google.com/p/game-music-emu/
https://lib.openmpt.org/libopenmpt/

Enable loading of external tracks, disabled by default. Enabling this can theoretically leak
information in some use cases.

use_absolute_path

Allows loading of external tracks via absolute paths, disabled by default. Enabling this poses a
security risk. It should only be enabled if the source is known to be non malicious.

3.12 mpegts# TOC

MPEG-2 transport stream demuxer.

This demuxer accepts the following options:

resync_size

Set size limit for looking up a new synchronization. Default value is 65536.

fix_teletext_pts

Override teletext packet PTS and DTS values with the timestamps calculated from the PCR of the
first program which the teletext stream is part of and is not discarded. Default value is 1, set this
option to 0 if you want your teletext packet PTS and DTS values untouched.

ts_packetsize

Output option carrying the raw packet size in bytes. Show the detected raw packet size, cannot be set
by the user.

scan_all_pmts

Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means automatic
setting, 1 means enabled, 0 means disabled). Default value is -1.

3.13 mpjpeg# TOC

MJPEG encapsulated in multi-part MIME demuxer.

This demuxer allows reading of MJPEG, where each frame is represented as a part of
multipart/x-mixed-replace stream.

strict_mime_boundary

Default implementation applies a relaxed standard to multi-part MIME boundary detection, to
prevent regression with numerous existing endpoints not generating a proper MIME MJPEG stream.
Turning this option on by setting it to 1 will result in a stricter check of the boundary value.

3.14 rawvideo# TOC

Raw video demuxer.

This demuxer allows one to read raw video data. Since there is no header specifying the assumed video
parameters, the user must specify them in order to be able to decode the data correctly.

This demuxer accepts the following options:

framerate

Set input video frame rate. Default value is 25.

pixel_format

Set the input video pixel format. Default value is yuv420p.

video_size

Set the input video size. This value must be specified explicitly.

For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of rgb24, a
video size of 320x240, and a frame rate of 10 images per second, use the command:

ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw

3.15 sbg# TOC

SBaGen script demuxer.

This demuxer reads the script language used by SBaGen http://uazu.net/sbagen/ to generate binaural beats
sessions. A SBG script looks like that:

-SE
a: 300-2.5/3 440+4.5/0
b: 300-2.5/0 440+4.5/3
off: -
NOW == a
+0:07:00 == b
+0:14:00 == a
+0:21:00 == b
+0:30:00 off

A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps
(including the script start time) or only relative ones, then its layout is fixed, and the conversion is
straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference
for relative timestamps will be taken from the current time of day at the time the script is read, and the
script layout will be frozen according to that reference. That means that if the script is directly played, the
actual times will match the absolute timestamps up to the sound controller’s clock accuracy, but if the user
somehow pauses the playback or seeks, all times will be shifted accordingly.

http://uazu.net/sbagen/

3.16 tedcaptions# TOC

JSON captions used for TED Talks.

TED does not provide links to the captions, but they can be guessed from the page. The file
tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.

This demuxer accepts the following option:

start_time

Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync the
captions with the downloadable videos, because they include a 15s intro.

Example: convert the captions to a format most players understand:

ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt

4 Muxers# TOC
Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of
file.

When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all
available muxers using the configure option --list-muxers.

You can disable all the muxers with the configure option --disable-muxers and selectively enable /
disable single muxers with the options --enable-muxer=MUXER / --disable-muxer=MUXER.

The option -muxers of the ff* tools will display the list of enabled muxers. Use -formats to view a
combined list of enabled demuxers and muxers.

A description of some of the currently available muxers follows.

4.1 aiff# TOC

Audio Interchange File Format muxer.

4.1.1 Options# TOC

It accepts the following options:

write_id3v2

Enable ID3v2 tags writing when set to 1. Default is 0 (disabled).

http://www.ted.com/

id3v2_version

Select ID3v2 version to write. Currently only version 3 and 4 (aka. ID3v2.3 and ID3v2.4) are
supported. The default is version 4.

4.2 asf# TOC

Advanced Systems Format muxer.

Note that Windows Media Audio (wma) and Windows Media Video (wmv) use this muxer too.

4.2.1 Options# TOC

It accepts the following options:

packet_size

Set the muxer packet size. By tuning this setting you may reduce data fragmentation or muxer
overhead depending on your source. Default value is 3200, minimum is 100, maximum is 64k.

4.3 avi# TOC

Audio Video Interleaved muxer.

4.3.1 Options# TOC

It accepts the following options:

reserve_index_space

Reserve the specified amount of bytes for the OpenDML master index of each stream within the file
header. By default additional master indexes are embedded within the data packets if there is no
space left in the first master index and are linked together as a chain of indexes. This index structure
can cause problems for some use cases, e.g. third-party software strictly relying on the OpenDML
index specification or when file seeking is slow. Reserving enough index space in the file header
avoids these problems.

The required index space depends on the output file size and should be about 16 bytes per gigabyte.
When this option is omitted or set to zero the necessary index space is guessed.

write_channel_mask

Write the channel layout mask into the audio stream header.

This option is enabled by default. Disabling the channel mask can be useful in specific scenarios, e.g.
when merging multiple audio streams into one for compatibility with software that only supports a
single audio stream in AVI (see (ffmpeg-filters)the "amerge" section in the ffmpeg-filters manual).

4.4 chromaprint# TOC

Chromaprint fingerprinter

This muxer feeds audio data to the Chromaprint library, which generates a fingerprint for the provided
audio data. It takes a single signed native-endian 16-bit raw audio stream.

4.4.1 Options# TOC

silence_threshold

Threshold for detecting silence, ranges from 0 to 32767. -1 for default (required for use with the
AcoustID service).

algorithm

Algorithm index to fingerprint with.

fp_format

Format to output the fingerprint as. Accepts the following options:

‘raw’

Binary raw fingerprint

‘compressed’

Binary compressed fingerprint

‘base64’

Base64 compressed fingerprint

4.5 crc# TOC

CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default
audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the
CRC.

The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal
number 0-padded to 8 digits containing the CRC for all the decoded input frames.

See also the framecrc muxer.

4.5.1 Examples# TOC

For example to compute the CRC of the input, and store it in the file out.crc:

ffmpeg -i INPUT -f crc out.crc

You can print the CRC to stdout with the command:

ffmpeg -i INPUT -f crc -

You can select the output format of each frame with ffmpeg by specifying the audio and video codec and
format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the
input video converted to MPEG-2 video, use the command:

ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -

4.6 flv# TOC

Adobe Flash Video Format muxer.

This muxer accepts the following options:

flvflags flags

Possible values:

‘aac_seq_header_detect’

Place AAC sequence header based on audio stream data.

‘no_sequence_end’

Disable sequence end tag.

‘no_metadata’

Disable metadata tag.

‘no_duration_filesize’

Disable duration and filesize in metadata when they are equal to zero at the end of stream. (Be
used to non-seekable living stream).

‘add_keyframe_index’

Used to facilitate seeking; particularly for HTTP pseudo streaming.

4.7 framecrc# TOC

Per-packet CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio
frames are converted to signed 16-bit raw audio and video frames to raw video before computing the
CRC.

The output of the muxer consists of a line for each audio and video packet of the form:

stream_index, packet_dts, packet_pts, packet_duration, packet_size, 0xCRC

CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet.

4.7.1 Examples# TOC

For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and
video packets, and store it in the file out.crc:

ffmpeg -i INPUT -f framecrc out.crc

To print the information to stdout, use the command:

ffmpeg -i INPUT -f framecrc -

With ffmpeg, you can select the output format to which the audio and video frames are encoded before
computing the CRC for each packet by specifying the audio and video codec. For example, to compute the
CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input
video frame converted to MPEG-2 video, use the command:

ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -

See also the crc muxer.

4.8 framehash# TOC

Per-packet hash testing format.

This muxer computes and prints a cryptographic hash for each audio and video packet. This can be used
for packet-by-packet equality checks without having to individually do a binary comparison on each.

By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash, but the output of explicit conversions to other codecs can also be used. It uses the
SHA-256 cryptographic hash function by default, but supports several other algorithms.

The output of the muxer consists of a line for each audio and video packet of the form:

stream_index, packet_dts, packet_pts, packet_duration, packet_size, hash

hash is a hexadecimal number representing the computed hash for the packet.

hash algorithm

Use the cryptographic hash function specified by the string algorithm. Supported values include MD5,
murmur3, RIPEMD128, RIPEMD160, RIPEMD256, RIPEMD320, SHA160, SHA224, SHA256
(default), SHA512/224, SHA512/256, SHA384, SHA512, CRC32 and adler32.

4.8.1 Examples# TOC

To compute the SHA-256 hash of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out.sha256:

ffmpeg -i INPUT -f framehash out.sha256

To print the information to stdout, using the MD5 hash function, use the command:

ffmpeg -i INPUT -f framehash -hash md5 -

See also the hash muxer.

4.9 framemd5# TOC

Per-packet MD5 testing format.

This is a variant of the framehash muxer. Unlike that muxer, it defaults to using the MD5 hash function.

4.9.1 Examples# TOC

To compute the MD5 hash of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out.md5:

ffmpeg -i INPUT -f framemd5 out.md5

To print the information to stdout, use the command:

ffmpeg -i INPUT -f framemd5 -

See also the framehash and md5 muxers.

4.10 gif# TOC

Animated GIF muxer.

It accepts the following options:

loop

Set the number of times to loop the output. Use -1 for no loop, 0 for looping indefinitely (default).

final_delay

Force the delay (expressed in centiseconds) after the last frame. Each frame ends with a delay until
the next frame. The default is -1, which is a special value to tell the muxer to re-use the previous
delay. In case of a loop, you might want to customize this value to mark a pause for instance.

For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:

ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif

Note 1: if you wish to extract the frames into separate GIF files, you need to force the image2 muxer:

ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"

Note 2: the GIF format has a very large time base: the delay between two frames can therefore not be
smaller than one centi second.

4.11 hash# TOC

Hash testing format.

This muxer computes and prints a cryptographic hash of all the input audio and video frames. This can be
used for equality checks without having to do a complete binary comparison.

By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash, but the output of explicit conversions to other codecs can also be used. Timestamps
are ignored. It uses the SHA-256 cryptographic hash function by default, but supports several other
algorithms.

The output of the muxer consists of a single line of the form: algo=hash, where algo is a short string
representing the hash function used, and hash is a hexadecimal number representing the computed hash.

hash algorithm

Use the cryptographic hash function specified by the string algorithm. Supported values include MD5,
murmur3, RIPEMD128, RIPEMD160, RIPEMD256, RIPEMD320, SHA160, SHA224, SHA256
(default), SHA512/224, SHA512/256, SHA384, SHA512, CRC32 and adler32.

4.11.1 Examples# TOC

To compute the SHA-256 hash of the input converted to raw audio and video, and store it in the file
out.sha256:

ffmpeg -i INPUT -f hash out.sha256

To print an MD5 hash to stdout use the command:

ffmpeg -i INPUT -f hash -hash md5 -

See also the framehash muxer.

4.12 hls# TOC

Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming
(HLS) specification.

It creates a playlist file, and one or more segment files. The output filename specifies the playlist filename.

By default, the muxer creates a file for each segment produced. These files have the same name as the
playlist, followed by a sequential number and a .ts extension.

For example, to convert an input file with ffmpeg:

ffmpeg -i in.nut out.m3u8

This example will produce the playlist, out.m3u8, and segment files: out0.ts, out1.ts, out2.ts,
etc.

See also the segment muxer, which provides a more generic and flexible implementation of a segmenter,
and can be used to perform HLS segmentation.

4.12.1 Options# TOC

This muxer supports the following options:

hls_init_time seconds

Set the initial target segment length in seconds. Default value is 0. Segment will be cut on the next
key frame after this time has passed on the first m3u8 list. After the initial playlist is filled ffmpeg
will cut segments at duration equal to hls_time

hls_time seconds

Set the target segment length in seconds. Default value is 2. Segment will be cut on the next key
frame after this time has passed.

hls_list_size size

Set the maximum number of playlist entries. If set to 0 the list file will contain all the segments.
Default value is 5.

hls_ts_options options_list

Set output format options using a :-separated list of key=value parameters. Values containing :
special characters must be escaped.

hls_wrap wrap

This is a deprecated option, you can use hls_list_size and hls_flags
delete_segments instead it

This option is useful to avoid to fill the disk with many segment files, and limits the maximum
number of segment files written to disk to wrap.

hls_start_number_source

Start the playlist sequence number (#EXT-X-MEDIA-SEQUENCE) according to the specified
source. Unless hls_flags single_file is set, it also specifies source of starting sequence
numbers of segment and subtitle filenames. In any case, if hls_flags append_list is set and
read playlist sequence number is greater than the specified start sequence number, then that value will
be used as start value.

It accepts the following values:

generic (default)

Set the starting sequence numbers according to start_number option value.

epoch

The start number will be the seconds since epoch (1970-01-01 00:00:00)

datetime

The start number will be based on the current date/time as YYYYmmddHHMMSS. e.g.
20161231235759.

start_number number

Start the playlist sequence number (#EXT-X-MEDIA-SEQUENCE) from the specified number when
hls_start_number_source value is generic. (This is the default case.) Unless hls_flags
single_file is set, it also specifies starting sequence numbers of segment and subtitle filenames.
Default value is 0.

hls_allow_cache allowcache

Explicitly set whether the client MAY (1) or MUST NOT (0) cache media segments.

hls_base_url baseurl

Append baseurl to every entry in the playlist. Useful to generate playlists with absolute paths.

Note that the playlist sequence number must be unique for each segment and it is not to be confused
with the segment filename sequence number which can be cyclic, for example if the wrap option is
specified.

hls_segment_filename filename

Set the segment filename. Unless hls_flags single_file is set, filename is used as a string
format with the segment number:

ffmpeg -i in.nut -hls_segment_filename ’file%03d.ts’ out.m3u8

This example will produce the playlist, out.m3u8, and segment files: file000.ts,
file001.ts, file002.ts, etc.

filename may contain full path or relative path specification, but only the file name part without any
path info will be contained in the m3u8 segment list. Should a relative path be specified, the path of
the created segment files will be relative to the current working directory. When use_localtime_mkdir
is set, the whole expanded value of filename will be written into the m3u8 segment list.

use_localtime

Use strftime() on filename to expand the segment filename with localtime. The segment number is
also available in this mode, but to use it, you need to specify second_level_segment_index hls_flag
and %%d will be the specifier.

ffmpeg -i in.nut -use_localtime 1 -hls_segment_filename ’file-%Y%m%d-%s.ts’ out.m3u8

This example will produce the playlist, out.m3u8, and segment files:
file-20160215-1455569023.ts, file-20160215-1455569024.ts, etc. Note: On
some systems/environments, the %s specifier is not available. See strftime() documentation.

ffmpeg -i in.nut -use_localtime 1 -hls_flags second_level_segment_index -hls_segment_filename ’file-%Y%m%d-%%04d.ts’ out.m3u8

This example will produce the playlist, out.m3u8, and segment files:
file-20160215-0001.ts, file-20160215-0002.ts, etc.

use_localtime_mkdir

Used together with -use_localtime, it will create all subdirectories which is expanded in filename.

ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename ’%Y%m%d/file-%Y%m%d-%s.ts’ out.m3u8

This example will create a directory 201560215 (if it does not exist), and then produce the playlist,
out.m3u8, and segment files: 20160215/file-20160215-1455569023.ts,
20160215/file-20160215-1455569024.ts, etc.

ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename ’%Y/%m/%d/file-%Y%m%d-%s.ts’ out.m3u8

This example will create a directory hierarchy 2016/02/15 (if any of them do not exist), and then
produce the playlist, out.m3u8, and segment files:
2016/02/15/file-20160215-1455569023.ts,
2016/02/15/file-20160215-1455569024.ts, etc.

hls_key_info_file key_info_file

Use the information in key_info_file for segment encryption. The first line of key_info_file specifies
the key URI written to the playlist. The key URL is used to access the encryption key during
playback. The second line specifies the path to the key file used to obtain the key during the
encryption process. The key file is read as a single packed array of 16 octets in binary format. The
optional third line specifies the initialization vector (IV) as a hexadecimal string to be used instead of
the segment sequence number (default) for encryption. Changes to key_info_file will result in
segment encryption with the new key/IV and an entry in the playlist for the new key URI/IV.

Key info file format:

key URI
key file path
IV (optional)

Example key URIs:

http://server/file.key
/path/to/file.key
file.key

Example key file paths:

file.key
/path/to/file.key

Example IV:

0123456789ABCDEF0123456789ABCDEF

Key info file example:

http://server/file.key
/path/to/file.key
0123456789ABCDEF0123456789ABCDEF

Example shell script:

#!/bin/sh
BASE_URL=${1:-’.’}
openssl rand 16 > file.key
echo $BASE_URL/file.key > file.keyinfo
echo file.key >> file.keyinfo
echo $(openssl rand -hex 16) >> file.keyinfo
ffmpeg -f lavfi -re -i testsrc -c:v h264 -hls_flags delete_segments \
 -hls_key_info_file file.keyinfo out.m3u8

hls_flags flags

Possible values:

‘single_file’

If this flag is set, the muxer will store all segments in a single MPEG-TS file, and will use byte
ranges in the playlist. HLS playlists generated with this way will have the version number 4. For
example:

ffmpeg -i in.nut -hls_flags single_file out.m3u8

Will produce the playlist, out.m3u8, and a single segment file, out.ts.

‘delete_segments’

Segment files removed from the playlist are deleted after a period of time equal to the duration
of the segment plus the duration of the playlist.

‘append_list’

Append new segments into the end of old segment list, and remove the #EXT-X-ENDLIST
from the old segment list.

‘round_durations’

Round the duration info in the playlist file segment info to integer values, instead of using
floating point.

‘discont_start’

Add the #EXT-X-DISCONTINUITY tag to the playlist, before the first segment’s information.

‘omit_endlist’

Do not append the EXT-X-ENDLIST tag at the end of the playlist.

‘split_by_time’

Allow segments to start on frames other than keyframes. This improves behavior on some
players when the time between keyframes is inconsistent, but may make things worse on others,
and can cause some oddities during seeking. This flag should be used with the hls_time

option.

‘program_date_time’

Generate EXT-X-PROGRAM-DATE-TIME tags.

‘second_level_segment_index’

Makes it possible to use segment indexes as %%d in hls_segment_filename expression besides
date/time values when use_localtime is on. To get fixed width numbers with trailing zeroes,
%%0xd format is available where x is the required width.

‘second_level_segment_size’

Makes it possible to use segment sizes (counted in bytes) as %%s in hls_segment_filename
expression besides date/time values when use_localtime is on. To get fixed width numbers with
trailing zeroes, %%0xs format is available where x is the required width.

‘second_level_segment_duration’

Makes it possible to use segment duration (calculated in microseconds) as %%t in
hls_segment_filename expression besides date/time values when use_localtime is on. To get
fixed width numbers with trailing zeroes, %%0xt format is available where x is the required
width.

‘temp_file’

Write segment data to filename.tmp and rename to filename only once the segment is complete.
A webserver serving up segments can be configured to reject requests to *.tmp to prevent access
to in-progress segments before they have been added to the m3u8 playlist.

ffmpeg -i sample.mpeg \
 -f hls -hls_time 3 -hls_list_size 5 \
 -hls_flags second_level_segment_index+second_level_segment_size+second_level_segment_duration \
 -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename "segment_%Y%m%d%H%M%S_%%04d_%%08s_%%013t.ts" stream.m3u8

This will produce segments like this:
segment_20170102194334_0003_00122200_0000003000000.ts,
segment_20170102194334_0004_00120072_0000003000000.ts etc.

hls_playlist_type event

Emit #EXT-X-PLAYLIST-TYPE:EVENT in the m3u8 header. Forces hls_list_size to 0; the
playlist can only be appended to.

hls_playlist_type vod

Emit #EXT-X-PLAYLIST-TYPE:VOD in the m3u8 header. Forces hls_list_size to 0; the
playlist must not change.

method

Use the given HTTP method to create the hls files.

ffmpeg -re -i in.ts -f hls -method PUT http://example.com/live/out.m3u8

This example will upload all the mpegts segment files to the HTTP server using the HTTP PUT
method, and update the m3u8 files every refresh times using the same method. Note that the
HTTP server must support the given method for uploading files.

4.13 ico# TOC

ICO file muxer.

Microsoft’s icon file format (ICO) has some strict limitations that should be noted:

Size cannot exceed 256 pixels in any dimension
Only BMP and PNG images can be stored
If a BMP image is used, it must be one of the following pixel formats:

BMP Bit Depth FFmpeg Pixel Format
1bit pal8
4bit pal8
8bit pal8
16bit rgb555le
24bit bgr24
32bit bgra

If a BMP image is used, it must use the BITMAPINFOHEADER DIB header
If a PNG image is used, it must use the rgba pixel format

4.14 image2# TOC

Image file muxer.

The image file muxer writes video frames to image files.

The output filenames are specified by a pattern, which can be used to produce sequentially numbered
series of files. The pattern may contain the string "%d" or "%0Nd", this string specifies the position of the
characters representing a numbering in the filenames. If the form "%0Nd" is used, the string representing
the number in each filename is 0-padded to N digits. The literal character ’%’ can be specified in the
pattern with the string "%%".

If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the number
1, all the following numbers will be sequential.

The pattern may contain a suffix which is used to automatically determine the format of the image files to
write.

For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img-010.bmp, etc. The pattern "img%%-%d.jpg" will specify a
sequence of filenames of the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc.

4.14.1 Examples# TOC

The following example shows how to use ffmpeg for creating a sequence of files img-001.jpeg,
img-002.jpeg, ..., taking one image every second from the input video:

ffmpeg -i in.avi -vsync cfr -r 1 -f image2 ’img-%03d.jpeg’

Note that with ffmpeg, if the format is not specified with the -f option and the output filename specifies
an image file format, the image2 muxer is automatically selected, so the previous command can be written
as:

ffmpeg -i in.avi -vsync cfr -r 1 ’img-%03d.jpeg’

Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single
image file img.jpeg from the start of the input video you can employ the command:

ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg

The strftime option allows you to expand the filename with date and time information. Check the
documentation of the strftime() function for the syntax.

For example to generate image files from the strftime() "%Y-%m-%d_%H-%M-%S" pattern, the
following ffmpeg command can be used:

ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg"

4.14.2 Options# TOC

start_number

Start the sequence from the specified number. Default value is 0.

update

If set to 1, the filename will always be interpreted as just a filename, not a pattern, and the
corresponding file will be continuously overwritten with new images. Default value is 0.

strftime

If set to 1, expand the filename with date and time information from strftime(). Default value is
0.

The image muxer supports the .Y.U.V image file format. This format is special in that that each image
frame consists of three files, for each of the YUV420P components. To read or write this image file
format, specify the name of the ’.Y’ file. The muxer will automatically open the ’.U’ and ’.V’ files as
required.

4.15 matroska# TOC

Matroska container muxer.

This muxer implements the matroska and webm container specs.

4.15.1 Metadata# TOC

The recognized metadata settings in this muxer are:

title

Set title name provided to a single track.

language

Specify the language of the track in the Matroska languages form.

The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for
French), or a language code mixed with a country code for specialities in languages (like "fre-ca" for
Canadian French).

stereo_mode

Set stereo 3D video layout of two views in a single video track.

The following values are recognized:

‘mono’

video is not stereo

‘left_right’

Both views are arranged side by side, Left-eye view is on the left

‘bottom_top’

Both views are arranged in top-bottom orientation, Left-eye view is at bottom

‘top_bottom’

Both views are arranged in top-bottom orientation, Left-eye view is on top

‘checkerboard_rl’

Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first

‘checkerboard_lr’

Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first

‘row_interleaved_rl’

Each view is constituted by a row based interleaving, Right-eye view is first row

‘row_interleaved_lr’

Each view is constituted by a row based interleaving, Left-eye view is first row

‘col_interleaved_rl’

Both views are arranged in a column based interleaving manner, Right-eye view is first column

‘col_interleaved_lr’

Both views are arranged in a column based interleaving manner, Left-eye view is first column

‘anaglyph_cyan_red’

All frames are in anaglyph format viewable through red-cyan filters

‘right_left’

Both views are arranged side by side, Right-eye view is on the left

‘anaglyph_green_magenta’

All frames are in anaglyph format viewable through green-magenta filters

‘block_lr’

Both eyes laced in one Block, Left-eye view is first

‘block_rl’

Both eyes laced in one Block, Right-eye view is first

For example a 3D WebM clip can be created using the following command line:

ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm

4.15.2 Options# TOC

This muxer supports the following options:

reserve_index_space

By default, this muxer writes the index for seeking (called cues in Matroska terms) at the end of the
file, because it cannot know in advance how much space to leave for the index at the beginning of the
file. However for some use cases – e.g. streaming where seeking is possible but slow – it is useful to
put the index at the beginning of the file.

If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file
header and then try to write the cues there when the muxing finishes. If the available space does not
suffice, muxing will fail. A safe size for most use cases should be about 50kB per hour of video.

Note that cues are only written if the output is seekable and this option will have no effect if it is not.

4.16 md5# TOC

MD5 testing format.

This is a variant of the hash muxer. Unlike that muxer, it defaults to using the MD5 hash function.

4.16.1 Examples# TOC

To compute the MD5 hash of the input converted to raw audio and video, and store it in the file
out.md5:

ffmpeg -i INPUT -f md5 out.md5

You can print the MD5 to stdout with the command:

ffmpeg -i INPUT -f md5 -

See also the hash and framemd5 muxers.

4.17 mov, mp4, ismv# TOC

MOV/MP4/ISMV (Smooth Streaming) muxer.

The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about
all packets stored in one location (written at the end of the file, it can be moved to the start for better
playback by adding faststart to the movflags, or using the qt-faststart tool). A fragmented file
consists of a number of fragments, where packets and metadata about these packets are stored together.
Writing a fragmented file has the advantage that the file is decodable even if the writing is interrupted
(while a normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory
when writing very long files (since writing normal MOV/MP4 files stores info about every single packet
in memory until the file is closed). The downside is that it is less compatible with other applications.

4.17.1 Options# TOC

Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments:

-moov_size bytes

Reserves space for the moov atom at the beginning of the file instead of placing the moov atom at the
end. If the space reserved is insufficient, muxing will fail.

-movflags frag_keyframe

Start a new fragment at each video keyframe.

-frag_duration duration

Create fragments that are duration microseconds long.

-frag_size size

Create fragments that contain up to size bytes of payload data.

-movflags frag_custom

Allow the caller to manually choose when to cut fragments, by calling av_write_frame(ctx,
NULL) to write a fragment with the packets written so far. (This is only useful with other
applications integrating libavformat, not from ffmpeg.)

-min_frag_duration duration

Don’t create fragments that are shorter than duration microseconds long.

If more than one condition is specified, fragments are cut when one of the specified conditions is fulfilled.
The exception to this is -min_frag_duration, which has to be fulfilled for any of the other
conditions to apply.

Additionally, the way the output file is written can be adjusted through a few other options:

-movflags empty_moov

Write an initial moov atom directly at the start of the file, without describing any samples in it.
Generally, an mdat/moov pair is written at the start of the file, as a normal MOV/MP4 file, containing
only a short portion of the file. With this option set, there is no initial mdat atom, and the moov atom
only describes the tracks but has a zero duration.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags separate_moof

Write a separate moof (movie fragment) atom for each track. Normally, packets for all tracks are
written in a moof atom (which is slightly more efficient), but with this option set, the muxer writes one
moof/mdat pair for each track, making it easier to separate tracks.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags faststart

Run a second pass moving the index (moov atom) to the beginning of the file. This operation can take
a while, and will not work in various situations such as fragmented output, thus it is not enabled by
default.

-movflags rtphint

Add RTP hinting tracks to the output file.

-movflags disable_chpl

Disable Nero chapter markers (chpl atom). Normally, both Nero chapters and a QuickTime chapter
track are written to the file. With this option set, only the QuickTime chapter track will be written.
Nero chapters can cause failures when the file is reprocessed with certain tagging programs, like
mp3Tag 2.61a and iTunes 11.3, most likely other versions are affected as well.

-movflags omit_tfhd_offset

Do not write any absolute base_data_offset in tfhd atoms. This avoids tying fragments to absolute
byte positions in the file/streams.

-movflags default_base_moof

Similarly to the omit_tfhd_offset, this flag avoids writing the absolute base_data_offset field in tfhd
atoms, but does so by using the new default-base-is-moof flag instead. This flag is new from
14496-12:2012. This may make the fragments easier to parse in certain circumstances (avoiding
basing track fragment location calculations on the implicit end of the previous track fragment).

-write_tmcd

Specify on to force writing a timecode track, off to disable it and auto to write a timecode track
only for mov and mp4 output (default).

4.17.2 Example# TOC

Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer.
Example:

ffmpeg -re <normal input/transcoding options> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)

4.17.3 Audible AAX# TOC

Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4 byte activation
secret.

ffmpeg -activation_bytes 1CEB00DA -i test.aax -vn -c:a copy output.mp4

4.18 mp3# TOC

The MP3 muxer writes a raw MP3 stream with the following optional features:

An ID3v2 metadata header at the beginning (enabled by default). Versions 2.3 and 2.4 are supported,
the id3v2_version private option controls which one is used (3 or 4). Setting id3v2_version
to 0 disables the ID3v2 header completely.

The muxer supports writing attached pictures (APIC frames) to the ID3v2 header. The pictures are
supplied to the muxer in form of a video stream with a single packet. There can be any number of
those streams, each will correspond to a single APIC frame. The stream metadata tags title and
comment map to APIC description and picture type respectively. See http://id3.org/id3v2.4.0-frames
for allowed picture types.

Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio
frames until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible
to avoid excessive buffering.

A Xing/LAME frame right after the ID3v2 header (if present). It is enabled by default, but will be
written only if the output is seekable. The write_xing private option can be used to disable it. The
frame contains various information that may be useful to the decoder, like the audio duration or
encoder delay.
A legacy ID3v1 tag at the end of the file (disabled by default). It may be enabled with the
write_id3v1 private option, but as its capabilities are very limited, its usage is not recommended.

Examples:

Write an mp3 with an ID3v2.3 header and an ID3v1 footer:

ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3

To attach a picture to an mp3 file select both the audio and the picture stream with map:

ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1
-metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3

Write a "clean" MP3 without any extra features:

ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3

http://id3.org/id3v2.4.0-frames

4.19 mpegts# TOC

MPEG transport stream muxer.

This muxer implements ISO 13818-1 and part of ETSI EN 300 468.

The recognized metadata settings in mpegts muxer are service_provider and service_name. If
they are not set the default for service_provider is "FFmpeg" and the default for service_name
is "Service01".

4.19.1 Options# TOC

The muxer options are:

mpegts_original_network_id number

Set the original_network_id (default 0x0001). This is unique identifier of a network in DVB. Its main
use is in the unique identification of a service through the path Original_Network_ID,
Transport_Stream_ID.

mpegts_transport_stream_id number

Set the transport_stream_id (default 0x0001). This identifies a transponder in DVB.

mpegts_service_id number

Set the service_id (default 0x0001) also known as program in DVB.

mpegts_service_type number

Set the program service_type (default digital_tv), see below a list of pre defined values.

mpegts_pmt_start_pid number

Set the first PID for PMT (default 0x1000, max 0x1f00).

mpegts_start_pid number

Set the first PID for data packets (default 0x0100, max 0x0f00).

mpegts_m2ts_mode number

Enable m2ts mode if set to 1. Default value is -1 which disables m2ts mode.

muxrate number

Set a constant muxrate (default VBR).

pcr_period numer

Override the default PCR retransmission time (default 20ms), ignored if variable muxrate is selected.

pat_period number

Maximal time in seconds between PAT/PMT tables.

sdt_period number

Maximal time in seconds between SDT tables.

pes_payload_size number

Set minimum PES packet payload in bytes.

mpegts_flags flags

Set flags (see below).

mpegts_copyts number

Preserve original timestamps, if value is set to 1. Default value is -1, which results in shifting
timestamps so that they start from 0.

tables_version number

Set PAT, PMT and SDT version (default 0, valid values are from 0 to 31, inclusively). This option
allows updating stream structure so that standard consumer may detect the change. To do so, reopen
output AVFormatContext (in case of API usage) or restart ffmpeg instance, cyclically changing
tables_version value:

ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...
ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111
ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...

Option mpegts_service_type accepts the following values:

hex_value

Any hexdecimal value between 0x01 to 0xff as defined in ETSI 300 468.

digital_tv

Digital TV service.

digital_radio

Digital Radio service.

teletext

Teletext service.

advanced_codec_digital_radio

Advanced Codec Digital Radio service.

mpeg2_digital_hdtv

MPEG2 Digital HDTV service.

advanced_codec_digital_sdtv

Advanced Codec Digital SDTV service.

advanced_codec_digital_hdtv

Advanced Codec Digital HDTV service.

Option mpegts_flags may take a set of such flags:

resend_headers

Reemit PAT/PMT before writing the next packet.

latm

Use LATM packetization for AAC.

pat_pmt_at_frames

Reemit PAT and PMT at each video frame.

system_b

Conform to System B (DVB) instead of System A (ATSC).

initial_discontinuity

Mark the initial packet of each stream as discontinuity.

4.19.2 Example# TOC

ffmpeg -i file.mpg -c copy \
 -mpegts_original_network_id 0x1122 \
 -mpegts_transport_stream_id 0x3344 \
 -mpegts_service_id 0x5566 \
 -mpegts_pmt_start_pid 0x1500 \
 -mpegts_start_pid 0x150 \
 -metadata service_provider="Some provider" \
 -metadata service_name="Some Channel" \
 -y out.ts

4.20 mxf, mxf_d10# TOC

MXF muxer.

4.20.1 Options# TOC

The muxer options are:

store_user_comments bool

Set if user comments should be stored if available or never. IRT D-10 does not allow user comments.
The default is thus to write them for mxf but not for mxf_d10

4.21 null# TOC

Null muxer.

This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes.

For example to benchmark decoding with ffmpeg you can use the command:

ffmpeg -benchmark -i INPUT -f null out.null

Note that the above command does not read or write the out.null file, but specifying the output file is
required by the ffmpeg syntax.

Alternatively you can write the command as:

ffmpeg -benchmark -i INPUT -f null -

4.22 nut# TOC

-syncpoints flags

Change the syncpoint usage in nut:

default use the normal low-overhead seeking aids.
none do not use the syncpoints at all, reducing the overhead but
making the stream non-seekable;

Use of this option is not recommended, as the resulting files are very damage sensitive and
seeking is not possible. Also in general the overhead from syncpoints is negligible. Note,
-write_index 0 can be used to disable all growing data tables, allowing to mux endless
streams with limited memory and without these disadvantages.

timestamped extend the syncpoint with a wallclock field.

The none and timestamped flags are experimental.

-write_index bool

Write index at the end, the default is to write an index.

ffmpeg -i INPUT -f_strict experimental -syncpoints none - | processor

4.23 ogg# TOC

Ogg container muxer.

-page_duration duration

Preferred page duration, in microseconds. The muxer will attempt to create pages that are
approximately duration microseconds long. This allows the user to compromise between seek
granularity and container overhead. The default is 1 second. A value of 0 will fill all segments,
making pages as large as possible. A value of 1 will effectively use 1 packet-per-page in most
situations, giving a small seek granularity at the cost of additional container overhead.

-serial_offset value

Serial value from which to set the streams serial number. Setting it to different and sufficiently large
values ensures that the produced ogg files can be safely chained.

4.24 segment, stream_segment, ssegment# TOC

Basic stream segmenter.

This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename pattern
can be set in a fashion similar to image2, or by using a strftime template if the strftime option is
enabled.

stream_segment is a variant of the muxer used to write to streaming output formats, i.e. which do not
require global headers, and is recommended for outputting e.g. to MPEG transport stream segments.
ssegment is a shorter alias for stream_segment.

Every segment starts with a keyframe of the selected reference stream, which is set through the
reference_stream option.

Note that if you want accurate splitting for a video file, you need to make the input key frames correspond
to the exact splitting times expected by the segmenter, or the segment muxer will start the new segment
with the key frame found next after the specified start time.

The segment muxer works best with a single constant frame rate video.

Optionally it can generate a list of the created segments, by setting the option segment_list. The list type is
specified by the segment_list_type option. The entry filenames in the segment list are set by default to the
basename of the corresponding segment files.

See also the hls muxer, which provides a more specific implementation for HLS segmentation.

4.24.1 Options# TOC

The segment muxer supports the following options:

increment_tc 1|0

if set to 1, increment timecode between each segment If this is selected, the input need to have a
timecode in the first video stream. Default value is 0.

reference_stream specifier

Set the reference stream, as specified by the string specifier. If specifier is set to auto, the reference
is chosen automatically. Otherwise it must be a stream specifier (see the “Stream specifiers” chapter
in the ffmpeg manual) which specifies the reference stream. The default value is auto.

segment_format format

Override the inner container format, by default it is guessed by the filename extension.

segment_format_options options_list

Set output format options using a :-separated list of key=value parameters. Values containing the :
special character must be escaped.

segment_list name

Generate also a listfile named name. If not specified no listfile is generated.

segment_list_flags flags

Set flags affecting the segment list generation.

It currently supports the following flags:

‘cache’

Allow caching (only affects M3U8 list files).

‘live’

Allow live-friendly file generation.

segment_list_size size

Update the list file so that it contains at most size segments. If 0 the list file will contain all the
segments. Default value is 0.

segment_list_entry_prefix prefix

Prepend prefix to each entry. Useful to generate absolute paths. By default no prefix is applied.

segment_list_type type

Select the listing format.

The following values are recognized:

‘flat’

Generate a flat list for the created segments, one segment per line.

‘csv, ext’

Generate a list for the created segments, one segment per line, each line matching the format
(comma-separated values):

segment_filename,segment_start_time,segment_end_time

segment_filename is the name of the output file generated by the muxer according to the
provided pattern. CSV escaping (according to RFC4180) is applied if required.

segment_start_time and segment_end_time specify the segment start and end time expressed in
seconds.

A list file with the suffix ".csv" or ".ext" will auto-select this format.

‘ext’ is deprecated in favor or ‘csv’.

‘ffconcat’

Generate an ffconcat file for the created segments. The resulting file can be read using the
FFmpeg concat demuxer.

A list file with the suffix ".ffcat" or ".ffconcat" will auto-select this format.

‘m3u8’

Generate an extended M3U8 file, version 3, compliant with
http://tools.ietf.org/id/draft-pantos-http-live-streaming.

A list file with the suffix ".m3u8" will auto-select this format.

If not specified the type is guessed from the list file name suffix.

segment_time time

Set segment duration to time, the value must be a duration specification. Default value is "2". See also
the segment_times option.

Note that splitting may not be accurate, unless you force the reference stream key-frames at the given
time. See the introductory notice and the examples below.

segment_atclocktime 1|0

If set to "1" split at regular clock time intervals starting from 00:00 o’clock. The time value specified
in segment_time is used for setting the length of the splitting interval.

For example with segment_time set to "900" this makes it possible to create files at 12:00
o’clock, 12:15, 12:30, etc.

Default value is "0".

segment_clocktime_offset duration

Delay the segment splitting times with the specified duration when using
segment_atclocktime.

For example with segment_time set to "900" and segment_clocktime_offset set to "300"
this makes it possible to create files at 12:05, 12:20, 12:35, etc.

Default value is "0".

segment_clocktime_wrap_duration duration

Force the segmenter to only start a new segment if a packet reaches the muxer within the specified
duration after the segmenting clock time. This way you can make the segmenter more resilient to
backward local time jumps, such as leap seconds or transition to standard time from daylight savings
time.

http://tools.ietf.org/id/draft-pantos-http-live-streaming

Default is the maximum possible duration which means starting a new segment regardless of the
elapsed time since the last clock time.

segment_time_delta delta

Specify the accuracy time when selecting the start time for a segment, expressed as a duration
specification. Default value is "0".

When delta is specified a key-frame will start a new segment if its PTS satisfies the relation:

PTS >= start_time - time_delta

This option is useful when splitting video content, which is always split at GOP boundaries, in case a
key frame is found just before the specified split time.

In particular may be used in combination with the ffmpeg option force_key_frames. The key frame
times specified by force_key_frames may not be set accurately because of rounding issues, with the
consequence that a key frame time may result set just before the specified time. For constant frame
rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the
specified time and the time set by force_key_frames.

segment_times times

Specify a list of split points. times contains a list of comma separated duration specifications, in
increasing order. See also the segment_time option.

segment_frames frames

Specify a list of split video frame numbers. frames contains a list of comma separated integer
numbers, in increasing order.

This option specifies to start a new segment whenever a reference stream key frame is found and the
sequential number (starting from 0) of the frame is greater or equal to the next value in the list.

segment_wrap limit

Wrap around segment index once it reaches limit.

segment_start_number number

Set the sequence number of the first segment. Defaults to 0.

strftime 1|0

Use the strftime function to define the name of the new segments to write. If this is selected, the
output segment name must contain a strftime function template. Default value is 0.

break_non_keyframes 1|0

If enabled, allow segments to start on frames other than keyframes. This improves behavior on some
players when the time between keyframes is inconsistent, but may make things worse on others, and can
cause some oddities during seeking. Defaults to 0.

reset_timestamps 1|0

Reset timestamps at the begin of each segment, so that each segment will start with near-zero
timestamps. It is meant to ease the playback of the generated segments. May not work with some
combinations of muxers/codecs. It is set to 0 by default.

initial_offset offset

Specify timestamp offset to apply to the output packet timestamps. The argument must be a time
duration specification, and defaults to 0.

write_empty_segments 1|0

If enabled, write an empty segment if there are no packets during the period a segment would usually
span. Otherwise, the segment will be filled with the next packet written. Defaults to 0.

4.24.2 Examples# TOC

Remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc., and
write the list of generated segments to out.list:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.list out%03d.nut

Segment input and set output format options for the output segments:

ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4

Segment the input file according to the split points specified by the segment_times option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut

Use the ffmpeg force_key_frames option to force key frames in the input at the specified
location, together with the segment option segment_time_delta to account for possible
roundings operated when setting key frame times.

ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \
-f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut

In order to force key frames on the input file, transcoding is required.

Segment the input file by splitting the input file according to the frame numbers sequence specified
with the segment_frames option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut

Convert the in.mkv to TS segments using the libx264 and aac encoders:

ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a aac -f ssegment -segment_list out.list out%03d.ts

Segment the input file, and create an M3U8 live playlist (can be used as live HLS source):

ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
-segment_list_flags +live -segment_time 10 out%03d.mkv

4.25 smoothstreaming# TOC

Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving with conventional
web server.

window_size

Specify the number of fragments kept in the manifest. Default 0 (keep all).

extra_window_size

Specify the number of fragments kept outside of the manifest before removing from disk. Default 5.

lookahead_count

Specify the number of lookahead fragments. Default 2.

min_frag_duration

Specify the minimum fragment duration (in microseconds). Default 5000000.

remove_at_exit

Specify whether to remove all fragments when finished. Default 0 (do not remove).

4.26 fifo# TOC

The fifo pseudo-muxer allows the separation of encoding and muxing by using first-in-first-out queue and
running the actual muxer in a separate thread. This is especially useful in combination with the tee muxer
and can be used to send data to several destinations with different reliability/writing speed/latency.

API users should be aware that callback functions (interrupt_callback, io_open and io_close) used within
its AVFormatContext must be thread-safe.

The behavior of the fifo muxer if the queue fills up or if the output fails is selectable,

output can be transparently restarted with configurable delay between retries based on real time or
time of the processed stream.
encoding can be blocked during temporary failure, or continue transparently dropping packets in case
fifo queue fills up.

fifo_format

Specify the format name. Useful if it cannot be guessed from the output name suffix.

queue_size

Specify size of the queue (number of packets). Default value is 60.

format_opts

Specify format options for the underlying muxer. Muxer options can be specified as a list of
key=value pairs separated by ’:’.

drop_pkts_on_overflow bool

If set to 1 (true), in case the fifo queue fills up, packets will be dropped rather than blocking the
encoder. This makes it possible to continue streaming without delaying the input, at the cost of
omitting part of the stream. By default this option is set to 0 (false), so in such cases the encoder will
be blocked until the muxer processes some of the packets and none of them is lost.

attempt_recovery bool

If failure occurs, attempt to recover the output. This is especially useful when used with network
output, since it makes it possible to restart streaming transparently. By default this option is set to 0
(false).

max_recovery_attempts

Sets maximum number of successive unsuccessful recovery attempts after which the output fails
permanently. By default this option is set to 0 (unlimited).

recovery_wait_time duration

Waiting time before the next recovery attempt after previous unsuccessful recovery attempt. Default
value is 5 seconds.

recovery_wait_streamtime bool

If set to 0 (false), the real time is used when waiting for the recovery attempt (i.e. the recovery will be
attempted after at least recovery_wait_time seconds). If set to 1 (true), the time of the processed
stream is taken into account instead (i.e. the recovery will be attempted after at least
recovery_wait_time seconds of the stream is omitted). By default, this option is set to 0 (false).

recover_any_error bool

If set to 1 (true), recovery will be attempted regardless of type of the error causing the failure. By
default this option is set to 0 (false) and in case of certain (usually permanent) errors the recovery is
not attempted even when attempt_recovery is set to 1.

restart_with_keyframe bool

Specify whether to wait for the keyframe after recovering from queue overflow or failure. This option
is set to 0 (false) by default.

4.26.1 Examples# TOC

Stream something to rtmp server, continue processing the stream at real-time rate even in case of
temporary failure (network outage) and attempt to recover streaming every second indefinitely.

ffmpeg -re -i ... -c:v libx264 -c:a aac -f fifo -fifo_format flv -map 0:v -map 0:a
 -drop_pkts_on_overflow 1 -attempt_recovery 1 -recovery_wait_time 1 rtmp://example.com/live/stream_name

4.27 tee# TOC

The tee muxer can be used to write the same data to several files or any other kind of muxer. It can be
used, for example, to both stream a video to the network and save it to disk at the same time.

It is different from specifying several outputs to the ffmpeg command-line tool because the audio and
video data will be encoded only once with the tee muxer; encoding can be a very expensive process. It is
not useful when using the libavformat API directly because it is then possible to feed the same packets to
several muxers directly.

use_fifo bool

If set to 1, slave outputs will be processed in separate thread using fifo muxer. This allows to
compensate for different speed/latency/reliability of outputs and setup transparent recovery. By
default this feature is turned off.

fifo_options

Options to pass to fifo pseudo-muxer instances. See fifo.

The slave outputs are specified in the file name given to the muxer, separated by ’|’. If any of the slave
name contains the ’|’ separator, leading or trailing spaces or any special character, it must be escaped (see
(ffmpeg-utils)the "Quoting and escaping" section in the ffmpeg-utils(1) manual).

Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated by
’:’, between square brackets. If the options values contain a special character or the ’:’ separator, they must
be escaped; note that this is a second level escaping.

The following special options are also recognized:

f

Specify the format name. Useful if it cannot be guessed from the output name suffix.

bsfs[/spec]

Specify a list of bitstream filters to apply to the specified output.

use_fifo bool

This allows to override tee muxer use_fifo option for individual slave muxer.

fifo_options

This allows to override tee muxer fifo_options for individual slave muxer. See fifo.

It is possible to specify to which streams a given bitstream filter applies, by appending a stream
specifier to the option separated by /. spec must be a stream specifier (see Format stream specifiers).
If the stream specifier is not specified, the bitstream filters will be applied to all streams in the output.

Several bitstream filters can be specified, separated by ",".

select

Select the streams that should be mapped to the slave output, specified by a stream specifier. If not
specified, this defaults to all the input streams. You may use multiple stream specifiers separated by
commas (,) e.g.: a:0,v

onfail

Specify behaviour on output failure. This can be set to either abort (which is default) or ignore.
abort will cause whole process to fail in case of failure on this slave output. ignore will ignore
failure on this output, so other outputs will continue without being affected.

4.27.1 Examples# TOC

Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP (the
streams need to be explicitly mapped):

ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
 "archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

As above, but continue streaming even if output to local file fails (for example local drive fills up):

ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
 "[onfail=ignore]archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

Use ffmpeg to encode the input, and send the output to three different destinations. The
dump_extra bitstream filter is used to add extradata information to all the output video keyframes
packets, as requested by the MPEG-TS format. The select option is applied to out.aac in order to
make it contain only audio packets.

ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac
 -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac"

As below, but select only stream a:1 for the audio output. Note that a second level escaping must be
performed, as ":" is a special character used to separate options.

ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac
 -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=\’a:1\’]out.aac"

Note: some codecs may need different options depending on the output format; the auto-detection of this
can not work with the tee muxer. The main example is the global_header flag.

4.28 webm_dash_manifest# TOC

WebM DASH Manifest muxer.

This muxer implements the WebM DASH Manifest specification to generate the DASH manifest XML. It
also supports manifest generation for DASH live streams.

For more information see:

WebM DASH Specification:
https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification
ISO DASH Specification:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip

4.28.1 Options# TOC

This muxer supports the following options:

adaptation_sets

This option has the following syntax: "id=x,streams=a,b,c id=y,streams=d,e" where x and y are the
unique identifiers of the adaptation sets and a,b,c,d and e are the indices of the corresponding audio
and video streams. Any number of adaptation sets can be added using this option.

live

Set this to 1 to create a live stream DASH Manifest. Default: 0.

chunk_start_index

Start index of the first chunk. This will go in the ‘startNumber’ attribute of the
‘SegmentTemplate’ element in the manifest. Default: 0.

chunk_duration_ms

Duration of each chunk in milliseconds. This will go in the ‘duration’ attribute of the
‘SegmentTemplate’ element in the manifest. Default: 1000.

utc_timing_url

URL of the page that will return the UTC timestamp in ISO format. This will go in the ‘value’
attribute of the ‘UTCTiming’ element in the manifest. Default: None.

https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip

time_shift_buffer_depth

Smallest time (in seconds) shifting buffer for which any Representation is guaranteed to be available.
This will go in the ‘timeShiftBufferDepth’ attribute of the ‘MPD’ element. Default: 60.

minimum_update_period

Minimum update period (in seconds) of the manifest. This will go in the
‘minimumUpdatePeriod’ attribute of the ‘MPD’ element. Default: 0.

4.28.2 Example# TOC

ffmpeg -f webm_dash_manifest -i video1.webm \
 -f webm_dash_manifest -i video2.webm \
 -f webm_dash_manifest -i audio1.webm \
 -f webm_dash_manifest -i audio2.webm \
 -map 0 -map 1 -map 2 -map 3 \
 -c copy \
 -f webm_dash_manifest \
 -adaptation_sets "id=0,streams=0,1 id=1,streams=2,3" \
 manifest.xml

4.29 webm_chunk# TOC

WebM Live Chunk Muxer.

This muxer writes out WebM headers and chunks as separate files which can be consumed by clients that
support WebM Live streams via DASH.

4.29.1 Options# TOC

This muxer supports the following options:

chunk_start_index

Index of the first chunk (defaults to 0).

header

Filename of the header where the initialization data will be written.

audio_chunk_duration

Duration of each audio chunk in milliseconds (defaults to 5000).

4.29.2 Example# TOC

ffmpeg -f v4l2 -i /dev/video0 \
 -f alsa -i hw:0 \
 -map 0:0 \
 -c:v libvpx-vp9 \

 -s 640x360 -keyint_min 30 -g 30 \
 -f webm_chunk \
 -header webm_live_video_360.hdr \
 -chunk_start_index 1 \
 webm_live_video_360_%d.chk \
 -map 1:0 \
 -c:a libvorbis \
 -b:a 128k \
 -f webm_chunk \
 -header webm_live_audio_128.hdr \
 -chunk_start_index 1 \
 -audio_chunk_duration 1000 \
 webm_live_audio_128_%d.chk

5 Metadata# TOC
FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and
then load it back using the metadata muxer/demuxer.

The file format is as follows:

1. A file consists of a header and a number of metadata tags divided into sections, each on its own line.
2. The header is a ‘;FFMETADATA’ string, followed by a version number (now 1).
3. Metadata tags are of the form ‘key=value’
4. Immediately after header follows global metadata
5. After global metadata there may be sections with per-stream/per-chapter metadata.
6. A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets (‘[’,

‘]’) and ends with next section or end of file.
7. At the beginning of a chapter section there may be an optional timebase to be used for start/end

values. It must be in form ‘TIMEBASE=num/den’, where num and den are integers. If the timebase
is missing then start/end times are assumed to be in milliseconds.

Next a chapter section must contain chapter start and end times in form ‘START=num’, ‘END=num’,
where num is a positive integer.

8. Empty lines and lines starting with ‘;’ or ‘#’ are ignored.
9. Metadata keys or values containing special characters (‘=’, ‘;’, ‘#’, ‘\’ and a newline) must be

escaped with a backslash ‘\’.
10. Note that whitespace in metadata (e.g. ‘foo = bar’) is considered to be a part of the tag (in the

example above key is ‘foo ’, value is ‘ bar’).

A ffmetadata file might look like this:

;FFMETADATA1
title=bike\\shed
;this is a comment
artist=FFmpeg troll team

[CHAPTER]
TIMEBASE=1/1000

START=0
#chapter ends at 0:01:00
END=60000
title=chapter \#1
[STREAM]
title=multi\
line

By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an
ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.

Extracting an ffmetadata file with ffmpeg goes as follows:

ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE

Reinserting edited metadata information from the FFMETADATAFILE file can be done as:

ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT

6 See Also# TOC
ffmpeg, ffplay, ffprobe, ffserver, libavformat

7 Authors# TOC
The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by
typing the command git log in the FFmpeg source directory, or browsing the online repository at
http://source.ffmpeg.org.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

This document was generated using makeinfo.

http://source.ffmpeg.org/
http://www.gnu.org/software/texinfo/

	FFmpeg Formats Documentation
	Table of Contents
	1 Description# TOC
	2 Format Options# TOC
	2.1 Format stream specifiers# TOC

	3 Demuxers# TOC
	3.1 aa# TOC
	3.2 applehttp# TOC
	3.3 apng# TOC
	3.4 asf# TOC
	3.5 concat# TOC
	3.5.1 Syntax# TOC
	3.5.2 Options# TOC
	3.5.3 Examples# TOC

	3.6 flv, live_flv# TOC
	3.7 gif# TOC
	3.8 image2# TOC
	3.8.1 Examples# TOC

	3.9 libgme# TOC
	3.10 libopenmpt# TOC
	3.11 mov/mp4/3gp/QuickTime# TOC
	3.12 mpegts# TOC
	3.13 mpjpeg# TOC
	3.14 rawvideo# TOC
	3.15 sbg# TOC
	3.16 tedcaptions# TOC

	4 Muxers# TOC
	4.1 aiff# TOC
	4.1.1 Options# TOC

	4.2 asf# TOC
	4.2.1 Options# TOC

	4.3 avi# TOC
	4.3.1 Options# TOC

	4.4 chromaprint# TOC
	4.4.1 Options# TOC

	4.5 crc# TOC
	4.5.1 Examples# TOC

	4.6 flv# TOC
	4.7 framecrc# TOC
	4.7.1 Examples# TOC

	4.8 framehash# TOC
	4.8.1 Examples# TOC

	4.9 framemd5# TOC
	4.9.1 Examples# TOC

	4.10 gif# TOC
	4.11 hash# TOC
	4.11.1 Examples# TOC

	4.12 hls# TOC
	4.12.1 Options# TOC

	4.13 ico# TOC
	4.14 image2# TOC
	4.14.1 Examples# TOC
	4.14.2 Options# TOC

	4.15 matroska# TOC
	4.15.1 Metadata# TOC
	4.15.2 Options# TOC

	4.16 md5# TOC
	4.16.1 Examples# TOC

	4.17 mov, mp4, ismv# TOC
	4.17.1 Options# TOC
	4.17.2 Example# TOC
	4.17.3 Audible AAX# TOC

	4.18 mp3# TOC
	4.19 mpegts# TOC
	4.19.1 Options# TOC
	4.19.2 Example# TOC

	4.20 mxf, mxf_d10# TOC
	4.20.1 Options# TOC

	4.21 null# TOC
	4.22 nut# TOC
	4.23 ogg# TOC
	4.24 segment, stream_segment, ssegment# TOC
	4.24.1 Options# TOC
	4.24.2 Examples# TOC

	4.25 smoothstreaming# TOC
	4.26 fifo# TOC
	4.26.1 Examples# TOC

	4.27 tee# TOC
	4.27.1 Examples# TOC

	4.28 webm_dash_manifest# TOC
	4.28.1 Options# TOC
	4.28.2 Example# TOC

	4.29 webm_chunk# TOC
	4.29.1 Options# TOC
	4.29.2 Example# TOC

	5 Metadata# TOC
	6 See Also# TOC
	7 Authors# TOC

