
FFmpeg Protocols Documentation

Table of Contents
1 Description
2 Protocol Options
3 Protocols

3.1 async
3.2 bluray
3.3 cache
3.4 concat
3.5 crypto
3.6 data
3.7 file
3.8 ftp
3.9 gopher
3.10 hls
3.11 http

3.11.1 HTTP Cookies
3.12 Icecast
3.13 mmst
3.14 mmsh
3.15 md5
3.16 pipe
3.17 prompeg
3.18 rtmp
3.19 rtmpe
3.20 rtmps
3.21 rtmpt
3.22 rtmpte
3.23 rtmpts
3.24 libsmbclient
3.25 libssh
3.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte
3.27 rtp
3.28 rtsp

3.28.1 Examples
3.29 sap

3.29.1 Muxer
3.29.2 Demuxer

3.30 sctp
3.31 srtp
3.32 subfile

3.33 tee
3.34 tcp
3.35 tls
3.36 udp

3.36.1 Examples
3.37 unix

4 See Also
5 Authors

1 Description# TOC
This document describes the input and output protocols provided by the libavformat library.

2 Protocol Options# TOC
The libavformat library provides some generic global options, which can be set on all the protocols. In
addition each protocol may support so-called private options, which are specific for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVFormatContext options or using the libavutil/opt.h API for programmatic use.

The list of supported options follows:

protocol_whitelist list (input)

Set a ","-separated list of allowed protocols. "ALL" matches all protocols. Protocols prefixed by "-"
are disabled. All protocols are allowed by default but protocols used by an another protocol (nested
protocols) are restricted to a per protocol subset.

3 Protocols# TOC
Protocols are configured elements in FFmpeg that enable access to resources that require specific
protocols.

When you configure your FFmpeg build, all the supported protocols are enabled by default. You can list
all available ones using the configure option "–list-protocols".

You can disable all the protocols using the configure option "–disable-protocols", and selectively enable a
protocol using the option "–enable-protocol=PROTOCOL", or you can disable a particular protocol using
the option "–disable-protocol=PROTOCOL".

The option "-protocols" of the ff* tools will display the list of supported protocols.

All protocols accept the following options:

rw_timeout

Maximum time to wait for (network) read/write operations to complete, in microseconds.

A description of the currently available protocols follows.

3.1 async# TOC

Asynchronous data filling wrapper for input stream.

Fill data in a background thread, to decouple I/O operation from demux thread.

async:URL
async:http://host/resource
async:cache:http://host/resource

3.2 bluray# TOC

Read BluRay playlist.

The accepted options are:

angle

BluRay angle

chapter

Start chapter (1...N)

playlist

Playlist to read (BDMV/PLAYLIST/?????.mpls)

Examples:

Read longest playlist from BluRay mounted to /mnt/bluray:

bluray:/mnt/bluray

Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start from chapter 2:

-playlist 4 -angle 2 -chapter 2 bluray:/mnt/bluray

3.3 cache# TOC

Caching wrapper for input stream.

Cache the input stream to temporary file. It brings seeking capability to live streams.

cache:URL

3.4 concat# TOC

Physical concatenation protocol.

Read and seek from many resources in sequence as if they were a unique resource.

A URL accepted by this protocol has the syntax:

concat:URL1|URL2|...|URLN

where URL1, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly
specifying a distinct protocol.

For example to read a sequence of files split1.mpeg, split2.mpeg, split3.mpeg with ffplay
use the command:

ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg

Note that you may need to escape the character "|" which is special for many shells.

3.5 crypto# TOC

AES-encrypted stream reading protocol.

The accepted options are:

key

Set the AES decryption key binary block from given hexadecimal representation.

iv

Set the AES decryption initialization vector binary block from given hexadecimal representation.

Accepted URL formats:

crypto:URL
crypto+URL

3.6 data# TOC

Data in-line in the URI. See http://en.wikipedia.org/wiki/Data_URI_scheme.

http://en.wikipedia.org/wiki/Data_URI_scheme

For example, to convert a GIF file given inline with ffmpeg:

ffmpeg -i "" smiley.png

3.7 file# TOC

File access protocol.

Read from or write to a file.

A file URL can have the form:

file:filename

where filename is the path of the file to read.

An URL that does not have a protocol prefix will be assumed to be a file URL. Depending on the build, an
URL that looks like a Windows path with the drive letter at the beginning will also be assumed to be a file
URL (usually not the case in builds for unix-like systems).

For example to read from a file input.mpeg with ffmpeg use the command:

ffmpeg -i file:input.mpeg output.mpeg

This protocol accepts the following options:

truncate

Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

blocksize

Set I/O operation maximum block size, in bytes. Default value is INT_MAX, which results in not
limiting the requested block size. Setting this value reasonably low improves user termination request
reaction time, which is valuable for files on slow medium.

3.8 ftp# TOC

FTP (File Transfer Protocol).

Read from or write to remote resources using FTP protocol.

Following syntax is required.

ftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

This protocol accepts the following options.

timeout

Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

ftp-anonymous-password

Password used when login as anonymous user. Typically an e-mail address should be used.

ftp-write-seekable

Control seekability of connection during encoding. If set to 1 the resource is supposed to be seekable,
if set to 0 it is assumed not to be seekable. Default value is 0.

NOTE: Protocol can be used as output, but it is recommended to not do it, unless special care is taken
(tests, customized server configuration etc.). Different FTP servers behave in different way during seek
operation. ff* tools may produce incomplete content due to server limitations.

This protocol accepts the following options:

follow

If set to 1, the protocol will retry reading at the end of the file, allowing reading files that still are
being written. In order for this to terminate, you either need to use the rw_timeout option, or use the
interrupt callback (for API users).

3.9 gopher# TOC

Gopher protocol.

3.10 hls# TOC

Read Apple HTTP Live Streaming compliant segmented stream as a uniform one. The M3U8 playlists
describing the segments can be remote HTTP resources or local files, accessed using the standard file
protocol. The nested protocol is declared by specifying "+proto" after the hls URI scheme name, where
proto is either "file" or "http".

hls+http://host/path/to/remote/resource.m3u8
hls+file://path/to/local/resource.m3u8

Using this protocol is discouraged - the hls demuxer should work just as well (if not, please report the
issues) and is more complete. To use the hls demuxer instead, simply use the direct URLs to the m3u8
files.

3.11 http# TOC

HTTP (Hyper Text Transfer Protocol).

This protocol accepts the following options:

seekable

Control seekability of connection. If set to 1 the resource is supposed to be seekable, if set to 0 it is
assumed not to be seekable, if set to -1 it will try to autodetect if it is seekable. Default value is -1.

chunked_post

If set to 1 use chunked Transfer-Encoding for posts, default is 1.

content_type

Set a specific content type for the POST messages or for listen mode.

http_proxy

set HTTP proxy to tunnel through e.g. http://example.com:1234

headers

Set custom HTTP headers, can override built in default headers. The value must be a string encoding
the headers.

multiple_requests

Use persistent connections if set to 1, default is 0.

post_data

Set custom HTTP post data.

user_agent

Override the User-Agent header. If not specified the protocol will use a string describing the
libavformat build. ("Lavf/<version>")

user-agent

This is a deprecated option, you can use user_agent instead it.

timeout

Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

reconnect_at_eof

If set then eof is treated like an error and causes reconnection, this is useful for live / endless streams.

reconnect_streamed

If set then even streamed/non seekable streams will be reconnected on errors.

reconnect_delay_max

Sets the maximum delay in seconds after which to give up reconnecting

mime_type

Export the MIME type.

icy

If set to 1 request ICY (SHOUTcast) metadata from the server. If the server supports this, the
metadata has to be retrieved by the application by reading the icy_metadata_headers and
icy_metadata_packet options. The default is 1.

icy_metadata_headers

If the server supports ICY metadata, this contains the ICY-specific HTTP reply headers, separated by
newline characters.

icy_metadata_packet

If the server supports ICY metadata, and icy was set to 1, this contains the last non-empty metadata
packet sent by the server. It should be polled in regular intervals by applications interested in
mid-stream metadata updates.

cookies

Set the cookies to be sent in future requests. The format of each cookie is the same as the value of a
Set-Cookie HTTP response field. Multiple cookies can be delimited by a newline character.

offset

Set initial byte offset.

end_offset

Try to limit the request to bytes preceding this offset.

method

When used as a client option it sets the HTTP method for the request.

When used as a server option it sets the HTTP method that is going to be expected from the client(s).
If the expected and the received HTTP method do not match the client will be given a Bad Request
response. When unset the HTTP method is not checked for now. This will be replaced by autodetection in
the future.

listen

If set to 1 enables experimental HTTP server. This can be used to send data when used as an output
option, or read data from a client with HTTP POST when used as an input option. If set to 2 enables
experimental multi-client HTTP server. This is not yet implemented in ffmpeg.c or ffserver.c and
thus must not be used as a command line option.

Server side (sending):
ffmpeg -i somefile.ogg -c copy -listen 1 -f ogg http://server:port

Client side (receiving):
ffmpeg -i http://server:port -c copy somefile.ogg

Client can also be done with wget:
wget http://server:port -O somefile.ogg

Server side (receiving):
ffmpeg -listen 1 -i http://server:port -c copy somefile.ogg

Client side (sending):
ffmpeg -i somefile.ogg -chunked_post 0 -c copy -f ogg http://server:port

Client can also be done with wget:
wget --post-file=somefile.ogg http://server:port

3.11.1 HTTP Cookies# TOC

Some HTTP requests will be denied unless cookie values are passed in with the request. The cookies
option allows these cookies to be specified. At the very least, each cookie must specify a value along with
a path and domain. HTTP requests that match both the domain and path will automatically include the
cookie value in the HTTP Cookie header field. Multiple cookies can be delimited by a newline.

The required syntax to play a stream specifying a cookie is:

ffplay -cookies "nlqptid=nltid=tsn; path=/; domain=somedomain.com;" http://somedomain.com/somestream.m3u8

3.12 Icecast# TOC

Icecast protocol (stream to Icecast servers)

This protocol accepts the following options:

ice_genre

Set the stream genre.

ice_name

Set the stream name.

ice_description

Set the stream description.

ice_url

Set the stream website URL.

ice_public

Set if the stream should be public. The default is 0 (not public).

user_agent

Override the User-Agent header. If not specified a string of the form "Lavf/<version>" will be used.

password

Set the Icecast mountpoint password.

content_type

Set the stream content type. This must be set if it is different from audio/mpeg.

legacy_icecast

This enables support for Icecast versions < 2.4.0, that do not support the HTTP PUT method but the
SOURCE method.

icecast://[username[:password]@]server:port/mountpoint

3.13 mmst# TOC

MMS (Microsoft Media Server) protocol over TCP.

3.14 mmsh# TOC

MMS (Microsoft Media Server) protocol over HTTP.

The required syntax is:

mmsh://server[:port][/app][/playpath]

3.15 md5# TOC

MD5 output protocol.

Computes the MD5 hash of the data to be written, and on close writes this to the designated output or
stdout if none is specified. It can be used to test muxers without writing an actual file.

Some examples follow.

Write the MD5 hash of the encoded AVI file to the file output.avi.md5.
ffmpeg -i input.flv -f avi -y md5:output.avi.md5

Write the MD5 hash of the encoded AVI file to stdout.
ffmpeg -i input.flv -f avi -y md5:

Note that some formats (typically MOV) require the output protocol to be seekable, so they will fail with
the MD5 output protocol.

3.16 pipe# TOC

UNIX pipe access protocol.

Read and write from UNIX pipes.

The accepted syntax is:

pipe:[number]

number is the number corresponding to the file descriptor of the pipe (e.g. 0 for stdin, 1 for stdout, 2 for
stderr). If number is not specified, by default the stdout file descriptor will be used for writing, stdin for
reading.

For example to read from stdin with ffmpeg:

cat test.wav | ffmpeg -i pipe:0
...this is the same as...
cat test.wav | ffmpeg -i pipe:

For writing to stdout with ffmpeg:

ffmpeg -i test.wav -f avi pipe:1 | cat > test.avi
...this is the same as...
ffmpeg -i test.wav -f avi pipe: | cat > test.avi

This protocol accepts the following options:

blocksize

Set I/O operation maximum block size, in bytes. Default value is INT_MAX, which results in not
limiting the requested block size. Setting this value reasonably low improves user termination request
reaction time, which is valuable if data transmission is slow.

Note that some formats (typically MOV), require the output protocol to be seekable, so they will fail with
the pipe output protocol.

3.17 prompeg# TOC

Pro-MPEG Code of Practice #3 Release 2 FEC protocol.

The Pro-MPEG CoP#3 FEC is a 2D parity-check forward error correction mechanism for MPEG-2
Transport Streams sent over RTP.

This protocol must be used in conjunction with the rtp_mpegts muxer and the rtp protocol.

The required syntax is:

-f rtp_mpegts -fec prompeg=option=val... rtp://hostname:port

The destination UDP ports are port + 2 for the column FEC stream and port + 4 for the row FEC
stream.

This protocol accepts the following options:

l=n

The number of columns (4-20, LxD <= 100)

d=n

The number of rows (4-20, LxD <= 100)

Example usage:

-f rtp_mpegts -fec prompeg=l=8:d=4 rtp://hostname:port

3.18 rtmp# TOC

Real-Time Messaging Protocol.

The Real-Time Messaging Protocol (RTMP) is used for streaming multimedia content across a TCP/IP
network.

The required syntax is:

rtmp://[username:password@]server[:port][/app][/instance][/playpath]

The accepted parameters are:

username

An optional username (mostly for publishing).

password

An optional password (mostly for publishing).

server

The address of the RTMP server.

port

The number of the TCP port to use (by default is 1935).

app

It is the name of the application to access. It usually corresponds to the path where the application is
installed on the RTMP server (e.g. /ondemand/, /flash/live/, etc.). You can override the
value parsed from the URI through the rtmp_app option, too.

playpath

It is the path or name of the resource to play with reference to the application specified in app, may
be prefixed by "mp4:". You can override the value parsed from the URI through the
rtmp_playpath option, too.

listen

Act as a server, listening for an incoming connection.

timeout

Maximum time to wait for the incoming connection. Implies listen.

Additionally, the following parameters can be set via command line options (or in code via AVOptions):

rtmp_app

Name of application to connect on the RTMP server. This option overrides the parameter specified in
the URI.

rtmp_buffer

Set the client buffer time in milliseconds. The default is 3000.

rtmp_conn

Extra arbitrary AMF connection parameters, parsed from a string, e.g. like B:1 S:authMe O:1
NN:code:1.23 NS:flag:ok O:0. Each value is prefixed by a single character denoting the
type, B for Boolean, N for number, S for string, O for object, or Z for null, followed by a colon. For
Booleans the data must be either 0 or 1 for FALSE or TRUE, respectively. Likewise for Objects the
data must be 0 or 1 to end or begin an object, respectively. Data items in subobjects may be named,
by prefixing the type with ’N’ and specifying the name before the value (i.e. NB:myFlag:1). This
option may be used multiple times to construct arbitrary AMF sequences.

rtmp_flashver

Version of the Flash plugin used to run the SWF player. The default is LNX 9,0,124,2. (When
publishing, the default is FMLE/3.0 (compatible; <libavformat version>).)

rtmp_flush_interval

Number of packets flushed in the same request (RTMPT only). The default is 10.

rtmp_live

Specify that the media is a live stream. No resuming or seeking in live streams is possible. The
default value is any, which means the subscriber first tries to play the live stream specified in the
playpath. If a live stream of that name is not found, it plays the recorded stream. The other possible
values are live and recorded.

rtmp_pageurl

URL of the web page in which the media was embedded. By default no value will be sent.

rtmp_playpath

Stream identifier to play or to publish. This option overrides the parameter specified in the URI.

rtmp_subscribe

Name of live stream to subscribe to. By default no value will be sent. It is only sent if the option is
specified or if rtmp_live is set to live.

rtmp_swfhash

SHA256 hash of the decompressed SWF file (32 bytes).

rtmp_swfsize

Size of the decompressed SWF file, required for SWFVerification.

rtmp_swfurl

URL of the SWF player for the media. By default no value will be sent.

rtmp_swfverify

URL to player swf file, compute hash/size automatically.

rtmp_tcurl

URL of the target stream. Defaults to proto://host[:port]/app.

For example to read with ffplay a multimedia resource named "sample" from the application "vod"
from an RTMP server "myserver":

ffplay rtmp://myserver/vod/sample

To publish to a password protected server, passing the playpath and app names separately:

ffmpeg -re -i <input> -f flv -rtmp_playpath some/long/path -rtmp_app long/app/name rtmp://username:password@myserver/

3.19 rtmpe# TOC

Encrypted Real-Time Messaging Protocol.

The Encrypted Real-Time Messaging Protocol (RTMPE) is used for streaming multimedia content within
standard cryptographic primitives, consisting of Diffie-Hellman key exchange and HMACSHA256,
generating a pair of RC4 keys.

3.20 rtmps# TOC

Real-Time Messaging Protocol over a secure SSL connection.

The Real-Time Messaging Protocol (RTMPS) is used for streaming multimedia content across an
encrypted connection.

3.21 rtmpt# TOC

Real-Time Messaging Protocol tunneled through HTTP.

The Real-Time Messaging Protocol tunneled through HTTP (RTMPT) is used for streaming multimedia
content within HTTP requests to traverse firewalls.

3.22 rtmpte# TOC

Encrypted Real-Time Messaging Protocol tunneled through HTTP.

The Encrypted Real-Time Messaging Protocol tunneled through HTTP (RTMPTE) is used for streaming
multimedia content within HTTP requests to traverse firewalls.

3.23 rtmpts# TOC

Real-Time Messaging Protocol tunneled through HTTPS.

The Real-Time Messaging Protocol tunneled through HTTPS (RTMPTS) is used for streaming
multimedia content within HTTPS requests to traverse firewalls.

3.24 libsmbclient# TOC

libsmbclient permits one to manipulate CIFS/SMB network resources.

Following syntax is required.

smb://[[domain:]user[:password@]]server[/share[/path[/file]]]

This protocol accepts the following options.

timeout

Set timeout in milliseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

truncate

Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

workgroup

Set the workgroup used for making connections. By default workgroup is not specified.

For more information see: http://www.samba.org/.

3.25 libssh# TOC

Secure File Transfer Protocol via libssh

Read from or write to remote resources using SFTP protocol.

Following syntax is required.

http://www.samba.org/

sftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

This protocol accepts the following options.

timeout

Set timeout of socket I/O operations used by the underlying low level operation. By default it is set to
-1, which means that the timeout is not specified.

truncate

Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

private_key

Specify the path of the file containing private key to use during authorization. By default libssh
searches for keys in the ~/.ssh/ directory.

Example: Play a file stored on remote server.

ffplay sftp://user:password@server_address:22/home/user/resource.mpeg

3.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte# TOC

Real-Time Messaging Protocol and its variants supported through librtmp.

Requires the presence of the librtmp headers and library during configuration. You need to explicitly
configure the build with "–enable-librtmp". If enabled this will replace the native RTMP protocol.

This protocol provides most client functions and a few server functions needed to support RTMP, RTMP
tunneled in HTTP (RTMPT), encrypted RTMP (RTMPE), RTMP over SSL/TLS (RTMPS) and tunneled
variants of these encrypted types (RTMPTE, RTMPTS).

The required syntax is:

rtmp_proto://server[:port][/app][/playpath] options

where rtmp_proto is one of the strings "rtmp", "rtmpt", "rtmpe", "rtmps", "rtmpte", "rtmpts" corresponding
to each RTMP variant, and server, port, app and playpath have the same meaning as specified for the
RTMP native protocol. options contains a list of space-separated options of the form key=val.

See the librtmp manual page (man 3 librtmp) for more information.

For example, to stream a file in real-time to an RTMP server using ffmpeg:

ffmpeg -re -i myfile -f flv rtmp://myserver/live/mystream

To play the same stream using ffplay:

ffplay "rtmp://myserver/live/mystream live=1"

3.27 rtp# TOC

Real-time Transport Protocol.

The required syntax for an RTP URL is: rtp://hostname[:port][?option=val...]

port specifies the RTP port to use.

The following URL options are supported:

ttl=n

Set the TTL (Time-To-Live) value (for multicast only).

rtcpport=n

Set the remote RTCP port to n.

localrtpport=n

Set the local RTP port to n.

localrtcpport=n’

Set the local RTCP port to n.

pkt_size=n

Set max packet size (in bytes) to n.

connect=0|1

Do a connect() on the UDP socket (if set to 1) or not (if set to 0).

sources=ip[,ip]

List allowed source IP addresses.

block=ip[,ip]

List disallowed (blocked) source IP addresses.

write_to_source=0|1

Send packets to the source address of the latest received packet (if set to 1) or to a default remote
address (if set to 0).

localport=n

Set the local RTP port to n.

This is a deprecated option. Instead, localrtpport should be used.

Important notes:

1. If rtcpport is not set the RTCP port will be set to the RTP port value plus 1.
2. If localrtpport (the local RTP port) is not set any available port will be used for the local RTP

and RTCP ports.
3. If localrtcpport (the local RTCP port) is not set it will be set to the local RTP port value plus 1.

3.28 rtsp# TOC

Real-Time Streaming Protocol.

RTSP is not technically a protocol handler in libavformat, it is a demuxer and muxer. The demuxer
supports both normal RTSP (with data transferred over RTP; this is used by e.g. Apple and Microsoft) and
Real-RTSP (with data transferred over RDT).

The muxer can be used to send a stream using RTSP ANNOUNCE to a server supporting it (currently
Darwin Streaming Server and Mischa Spiegelmock’s RTSP server).

The required syntax for a RTSP url is:

rtsp://hostname[:port]/path

Options can be set on the ffmpeg/ffplay command line, or set in code via AVOptions or in
avformat_open_input.

The following options are supported.

initial_pause

Do not start playing the stream immediately if set to 1. Default value is 0.

rtsp_transport

Set RTSP transport protocols.

It accepts the following values:

‘udp’

Use UDP as lower transport protocol.

‘tcp’

https://github.com/revmischa/rtsp-server

Use TCP (interleaving within the RTSP control channel) as lower transport protocol.

‘udp_multicast’

Use UDP multicast as lower transport protocol.

‘http’

Use HTTP tunneling as lower transport protocol, which is useful for passing proxies.

Multiple lower transport protocols may be specified, in that case they are tried one at a time (if the
setup of one fails, the next one is tried). For the muxer, only the ‘tcp’ and ‘udp’ options are
supported.

rtsp_flags

Set RTSP flags.

The following values are accepted:

‘filter_src’

Accept packets only from negotiated peer address and port.

‘listen’

Act as a server, listening for an incoming connection.

‘prefer_tcp’

Try TCP for RTP transport first, if TCP is available as RTSP RTP transport.

Default value is ‘none’.

allowed_media_types

Set media types to accept from the server.

The following flags are accepted:

‘video’
‘audio’
‘data’

By default it accepts all media types.

min_port

Set minimum local UDP port. Default value is 5000.

max_port

Set maximum local UDP port. Default value is 65000.

timeout

Set maximum timeout (in seconds) to wait for incoming connections.

A value of -1 means infinite (default). This option implies the rtsp_flags set to ‘listen’.

reorder_queue_size

Set number of packets to buffer for handling of reordered packets.

stimeout

Set socket TCP I/O timeout in microseconds.

user-agent

Override User-Agent header. If not specified, it defaults to the libavformat identifier string.

When receiving data over UDP, the demuxer tries to reorder received packets (since they may arrive out
of order, or packets may get lost totally). This can be disabled by setting the maximum demuxing delay to
zero (via the max_delay field of AVFormatContext).

When watching multi-bitrate Real-RTSP streams with ffplay, the streams to display can be chosen with
-vst n and -ast n for video and audio respectively, and can be switched on the fly by pressing v and a.

3.28.1 Examples# TOC

The following examples all make use of the ffplay and ffmpeg tools.

Watch a stream over UDP, with a max reordering delay of 0.5 seconds:

ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4

Watch a stream tunneled over HTTP:

ffplay -rtsp_transport http rtsp://server/video.mp4

Send a stream in realtime to a RTSP server, for others to watch:

ffmpeg -re -i input -f rtsp -muxdelay 0.1 rtsp://server/live.sdp

Receive a stream in realtime:

ffmpeg -rtsp_flags listen -i rtsp://ownaddress/live.sdp output

3.29 sap# TOC

Session Announcement Protocol (RFC 2974). This is not technically a protocol handler in libavformat, it
is a muxer and demuxer. It is used for signalling of RTP streams, by announcing the SDP for the streams
regularly on a separate port.

3.29.1 Muxer# TOC

The syntax for a SAP url given to the muxer is:

sap://destination[:port][?options]

The RTP packets are sent to destination on port port, or to port 5004 if no port is specified. options is a
&-separated list. The following options are supported:

announce_addr=address

Specify the destination IP address for sending the announcements to. If omitted, the announcements
are sent to the commonly used SAP announcement multicast address 224.2.127.254 (sap.mcast.net),
or ff0e::2:7ffe if destination is an IPv6 address.

announce_port=port

Specify the port to send the announcements on, defaults to 9875 if not specified.

ttl=ttl

Specify the time to live value for the announcements and RTP packets, defaults to 255.

same_port=0|1

If set to 1, send all RTP streams on the same port pair. If zero (the default), all streams are sent on
unique ports, with each stream on a port 2 numbers higher than the previous. VLC/Live555 requires
this to be set to 1, to be able to receive the stream. The RTP stack in libavformat for receiving
requires all streams to be sent on unique ports.

Example command lines follow.

To broadcast a stream on the local subnet, for watching in VLC:

ffmpeg -re -i input -f sap sap://224.0.0.255?same_port=1

Similarly, for watching in ffplay:

ffmpeg -re -i input -f sap sap://224.0.0.255

And for watching in ffplay, over IPv6:

ffmpeg -re -i input -f sap sap://[ff0e::1:2:3:4]

3.29.2 Demuxer# TOC

The syntax for a SAP url given to the demuxer is:

sap://[address][:port]

address is the multicast address to listen for announcements on, if omitted, the default 224.2.127.254
(sap.mcast.net) is used. port is the port that is listened on, 9875 if omitted.

The demuxers listens for announcements on the given address and port. Once an announcement is
received, it tries to receive that particular stream.

Example command lines follow.

To play back the first stream announced on the normal SAP multicast address:

ffplay sap://

To play back the first stream announced on one the default IPv6 SAP multicast address:

ffplay sap://[ff0e::2:7ffe]

3.30 sctp# TOC

Stream Control Transmission Protocol.

The accepted URL syntax is:

sctp://host:port[?options]

The protocol accepts the following options:

listen

If set to any value, listen for an incoming connection. Outgoing connection is done by default.

max_streams

Set the maximum number of streams. By default no limit is set.

3.31 srtp# TOC

Secure Real-time Transport Protocol.

The accepted options are:

srtp_in_suite
srtp_out_suite

Select input and output encoding suites.

Supported values:

‘AES_CM_128_HMAC_SHA1_80’
‘SRTP_AES128_CM_HMAC_SHA1_80’
‘AES_CM_128_HMAC_SHA1_32’
‘SRTP_AES128_CM_HMAC_SHA1_32’

srtp_in_params
srtp_out_params

Set input and output encoding parameters, which are expressed by a base64-encoded representation
of a binary block. The first 16 bytes of this binary block are used as master key, the following 14
bytes are used as master salt.

3.32 subfile# TOC

Virtually extract a segment of a file or another stream. The underlying stream must be seekable.

Accepted options:

start

Start offset of the extracted segment, in bytes.

end

End offset of the extracted segment, in bytes.

Examples:

Extract a chapter from a DVD VOB file (start and end sectors obtained externally and multiplied by
2048):

subfile,,start,153391104,end,268142592,,:/media/dvd/VIDEO_TS/VTS_08_1.VOB

Play an AVI file directly from a TAR archive:

subfile,,start,183241728,end,366490624,,:archive.tar

3.33 tee# TOC

Writes the output to multiple protocols. The individual outputs are separated by |

tee:file://path/to/local/this.avi|file://path/to/local/that.avi

3.34 tcp# TOC

Transmission Control Protocol.

The required syntax for a TCP url is:

tcp://hostname:port[?options]

options contains a list of &-separated options of the form key=val.

The list of supported options follows.

listen=1|0

Listen for an incoming connection. Default value is 0.

timeout=microseconds

Set raise error timeout, expressed in microseconds.

This option is only relevant in read mode: if no data arrived in more than this time interval, raise
error.

listen_timeout=milliseconds

Set listen timeout, expressed in milliseconds.

recv_buffer_size=bytes

Set receive buffer size, expressed bytes.

send_buffer_size=bytes

Set send buffer size, expressed bytes.

The following example shows how to setup a listening TCP connection with ffmpeg, which is then
accessed with ffplay:

ffmpeg -i input -f format tcp://hostname:port?listen
ffplay tcp://hostname:port

3.35 tls# TOC

Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

The required syntax for a TLS/SSL url is:

tls://hostname:port[?options]

The following parameters can be set via command line options (or in code via AVOptions):

ca_file, cafile=filename

A file containing certificate authority (CA) root certificates to treat as trusted. If the linked TLS
library contains a default this might not need to be specified for verification to work, but not all
libraries and setups have defaults built in. The file must be in OpenSSL PEM format.

tls_verify=1|0

If enabled, try to verify the peer that we are communicating with. Note, if using OpenSSL, this
currently only makes sure that the peer certificate is signed by one of the root certificates in the CA
database, but it does not validate that the certificate actually matches the host name we are trying to
connect to. (With GnuTLS, the host name is validated as well.)

This is disabled by default since it requires a CA database to be provided by the caller in many cases.

cert_file, cert=filename

A file containing a certificate to use in the handshake with the peer. (When operating as server, in
listen mode, this is more often required by the peer, while client certificates only are mandated in
certain setups.)

key_file, key=filename

A file containing the private key for the certificate.

listen=1|0

If enabled, listen for connections on the provided port, and assume the server role in the handshake
instead of the client role.

Example command lines:

To create a TLS/SSL server that serves an input stream.

ffmpeg -i input -f format tls://hostname:port?listen&cert=server.crt&key=server.key

To play back a stream from the TLS/SSL server using ffplay:

ffplay tls://hostname:port

3.36 udp# TOC

User Datagram Protocol.

The required syntax for an UDP URL is:

udp://hostname:port[?options]

options contains a list of &-separated options of the form key=val.

In case threading is enabled on the system, a circular buffer is used to store the incoming data, which
allows one to reduce loss of data due to UDP socket buffer overruns. The fifo_size and overrun_nonfatal
options are related to this buffer.

The list of supported options follows.

buffer_size=size

Set the UDP maximum socket buffer size in bytes. This is used to set either the receive or send buffer
size, depending on what the socket is used for. Default is 64KB. See also fifo_size.

bitrate=bitrate

If set to nonzero, the output will have the specified constant bitrate if the input has enough packets to
sustain it.

burst_bits=bits

When using bitrate this specifies the maximum number of bits in packet bursts.

localport=port

Override the local UDP port to bind with.

localaddr=addr

Choose the local IP address. This is useful e.g. if sending multicast and the host has multiple
interfaces, where the user can choose which interface to send on by specifying the IP address of that
interface.

pkt_size=size

Set the size in bytes of UDP packets.

reuse=1|0

Explicitly allow or disallow reusing UDP sockets.

ttl=ttl

Set the time to live value (for multicast only).

connect=1|0

Initialize the UDP socket with connect(). In this case, the destination address can’t be changed
with ff_udp_set_remote_url later. If the destination address isn’t known at the start, this option can be
specified in ff_udp_set_remote_url, too. This allows finding out the source address for the packets
with getsockname, and makes writes return with AVERROR(ECONNREFUSED) if "destination
unreachable" is received. For receiving, this gives the benefit of only receiving packets from the
specified peer address/port.

sources=address[,address]

Only receive packets sent to the multicast group from one of the specified sender IP addresses.

block=address[,address]

Ignore packets sent to the multicast group from the specified sender IP addresses.

fifo_size=units

Set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes.
If not specified defaults to 7*4096.

overrun_nonfatal=1|0

Survive in case of UDP receiving circular buffer overrun. Default value is 0.

timeout=microseconds

Set raise error timeout, expressed in microseconds.

This option is only relevant in read mode: if no data arrived in more than this time interval, raise
error.

broadcast=1|0

Explicitly allow or disallow UDP broadcasting.

Note that broadcasting may not work properly on networks having a broadcast storm protection.

3.36.1 Examples# TOC

Use ffmpeg to stream over UDP to a remote endpoint:

ffmpeg -i input -f format udp://hostname:port

Use ffmpeg to stream in mpegts format over UDP using 188 sized UDP packets, using a large input
buffer:

ffmpeg -i input -f mpegts udp://hostname:port?pkt_size=188&buffer_size=65535

Use ffmpeg to receive over UDP from a remote endpoint:

ffmpeg -i udp://[multicast-address]:port ...

3.37 unix# TOC

Unix local socket

The required syntax for a Unix socket URL is:

unix://filepath

The following parameters can be set via command line options (or in code via AVOptions):

timeout

Timeout in ms.

listen

Create the Unix socket in listening mode.

4 See Also# TOC
ffmpeg, ffplay, ffprobe, ffserver, libavformat

5 Authors# TOC
The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by
typing the command git log in the FFmpeg source directory, or browsing the online repository at
http://source.ffmpeg.org.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

http://source.ffmpeg.org/

This document was generated using makeinfo.

http://www.gnu.org/software/texinfo/

	FFmpeg Protocols Documentation
	Table of Contents
	1 Description# TOC
	2 Protocol Options# TOC
	3 Protocols# TOC
	3.1 async# TOC
	3.2 bluray# TOC
	3.3 cache# TOC
	3.4 concat# TOC
	3.5 crypto# TOC
	3.6 data# TOC
	3.7 file# TOC
	3.8 ftp# TOC
	3.9 gopher# TOC
	3.10 hls# TOC
	3.11 http# TOC
	3.11.1 HTTP Cookies# TOC

	3.12 Icecast# TOC
	3.13 mmst# TOC
	3.14 mmsh# TOC
	3.15 md5# TOC
	3.16 pipe# TOC
	3.17 prompeg# TOC
	3.18 rtmp# TOC
	3.19 rtmpe# TOC
	3.20 rtmps# TOC
	3.21 rtmpt# TOC
	3.22 rtmpte# TOC
	3.23 rtmpts# TOC
	3.24 libsmbclient# TOC
	3.25 libssh# TOC
	3.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte# TOC
	3.27 rtp# TOC
	3.28 rtsp# TOC
	3.28.1 Examples# TOC

	3.29 sap# TOC
	3.29.1 Muxer# TOC
	3.29.2 Demuxer# TOC

	3.30 sctp# TOC
	3.31 srtp# TOC
	3.32 subfile# TOC
	3.33 tee# TOC
	3.34 tcp# TOC
	3.35 tls# TOC
	3.36 udp# TOC
	3.36.1 Examples# TOC

	3.37 unix# TOC

	4 See Also# TOC
	5 Authors# TOC

